
 Advanced search

Linux Journal Issue #40/August 1997

Features

Designing a Safe Network Using Firewalls by Paul Wouters
It is by no means necessary to purchase specialized firewall
hardware or even software. A Linux server—running on a $400
386 PC—provides as much protection as most commercial
firewalls, with much greater flexibility and easier configuration.

Tripping Up Intruders with Tripwire by Kevin Fenzi
You can ensure the security of your Linux machine with this
program.

TCFS: Transparent Cryptographic File System by Ermelindo Mauriello
Think of TCFS as an extended NFS. It acts just like NFS, but
allows a user to protect files using encryption.

Wrap A Security Blanket Around Your Computer by Lee Brotzman
TCP_wrappers: a simple, elegant and effective means to
safeguard your network services.

News & Articles

Programming with XForms, Part 2: Writing an Application by Thor
Sigvaldason
Security and Authentication with Digital Signatures by Robb Shecter
Interview with Sameer Parekh by James T. Dennis

Reviews

Product Review Berkshire PC Watchdog by David Walker
Product Review XVScan by Michael Montoure

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2160.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2174.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2180.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2009.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2304.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2342.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2102.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2215.html

Book Review The Java Series by Kirk Petersen
Book Review The Linux Database by Sid Wentworth

WWWsmith

A Web Crawler in Perl by Mike Thomas
At The Forge : Templates: Separating Programs from Design by
Reuven Lerner

Columns

Letters to the Editor
From the Editor
Stop the Presses Linux Trademark Dispute by Phil Hughes
New Products
System Administration SATAN: Analyzing Your Network by Rob
Havelt
Kernel Korner A Non-Technical Look Inside the EXT2 File System by
Randy Appleton
Linux Gazette Big Brother Monitoring System by Paul M. Sittler
Best of Technical Support

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2061.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2310.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2200.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2358.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2367.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2375.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2425.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2368.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2233.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2151.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2225.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2357.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Designing a Safe Network Using Firewalls

Paul Wouters

Issue #40, August 1997

Why you need a firewall and how to best set it up to meet your needs for
network security.

A firewall can be your best friend; it can also be the cause of a lot of unforeseen
problems. When should you consider placing a firewall into your network? And
if you are sure you need one, where in the network do you put it? Too often,
firewall policy results from a non-technical board meeting, on the basis of the
chairman's “I think we want a firewall to secure our network” remark. An
organization needs to think about its reasons for installing a firewall—what is it
meant to protect against, and how should it go about doing its job? This article
aims to clarify some of the issues that require consideration.

What is a Firewall?

Although this question seems easy to answer, it is not. The security experts say
a firewall is a dedicated machine that checks every network packet passing
through, and that either drops or rejects certain packets based on rules set by
the system administrator. However, today we also encounter firewalls running
web servers (Firewall-1 and various NT and Unix machines) and web servers
running a firewall application. It is now common practice to call anything that
filters network packets a firewall. Thus, the word firewall usually refers to the
function of filtering packets, or to the software that carries out that function—
and less often to the hardware that runs the application.

It is by no means necessary to purchase specialized firewall hardware or even
software. A Linux server—running on a $400 386 PC—provides as much
protection as most commercial firewalls, with much greater flexibility and
easier configuration.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Are Firewalls Necessary?

A few years ago I attended a Dutch Unix Users Group (NLUUG) conference. One
of the topics was “Using Firewalls to Secure Your Network”. After listening to a
few speakers, I had not found a single argument that justified the necessity of a
firewall. I still believe this is basically true. A good network doesn't need a
firewall to filter out nonsense; all machines should be able to cope with bad
data. However, theory and practice are two different things.

Unless you have incredibly tight control over your network, your users are likely
to install a wide variety of software on their workstations, and to use that
software in ways you probably haven't anticipated. In addition, new security
holes are discovered all the time in common operating systems, and it's very
difficult to make sure each machine has the latest version with all the bugs
fixed.

For both of these reasons, a centrally-controlled firewall is a valuable line of
defense. Yes, you should control the software your users install. Yes, you
should make sure the security controls on their workstations are as up-to-date
as possible. But since you can't rely on this being true all the time, firewalls
must always be a consideration and nearly always a reality.

The Ping of Death

A few months ago, a small crisis arose in the Internet security world—the
infamous “Ping of Death”. Somewhere in the BSD socket code, there was a
check missing on the size of certain fragmented network packets. The result
was that after reassembling a fragmented packet, the packet could end up
being a few bytes larger than the maximum allowed packet size. Since the code
assumed this could never happen, the internal variables were not made larger
than this maximum. The result was a very nasty buffer overflow causing
arbitrary code to be generated, usually crashing the machine. This bug affected
a large community, because it was present in the BSD socket code. Since this
code has often been used as a base for new software (and firmware), a wide
variety of systems were susceptible to this bug. A list of all operating systems
vulnerable to the “Ping of Death” can be found on Mike Bremford's page,
located at http://prospect.epresence.com/ping/. A lot of devices other than
operating systems were susceptible to this problem—Ethernet switches,
routers, modems, printers, hubs and firewalls as well. The busier the machine,
the more fatal the buffer overrun would be.

A second reason this bug was so incredibly dangerous was that it was trivial to
abuse. The Microsoft Windows operating systems contain an implementation
of the ICMP ping program that miscalculates the size of a packet. The maximum
packet you can tell it to use is 65527, which is indeed the maximum allowed IP

packet. But this implementation created a data segment of 65527 bytes and
then put an IP header on it. Obviously, you end up with a packet that is larger
than 65535. So all you had to do was type:

ping -l 65527 victim.com

Once this method was known, servers were crashing around the world as
people happily pinged the globe.

As you can see from the list on Mike's page, patches are not available for all the
known vulnerable devices. And even if they were, the system administration
staff would need at least a few days to fix all the equipment. This is a situation
where a firewall has a very valid role. If a security problem of this magnitude is
found, you can disable it at the access point of your network. If you had a
firewall at the time, most likely you filtered out all ICMP packets until you had
confirmed that your database servers were not vulnerable. Even though not a
single one of these machines should have been vulnerable, the truth is that a
lot of them were.

The conclusion we draw from this experience is that the speed and power of
response a firewall gives us can be an invaluable tool.

How Do We Secure Our Network with One or More Firewalls?

These are the basic questions you should ask:

1. What do we need to protect?
2. Against whom do we need to protect?
3. Where do we place the firewall(s) in the network?
4. How do we configure the firewall?
5. How do we monitor what is going on?

To answer these questions correctly, it is of vital importance that you map your
entire network. You don't need to map every single device in the network, since
that changes often anyway. Try to map the separate subnets, the routers, the
hubs and the physical locations (floors, offices, classrooms). Include the
important parts of the network that you wish to secure the most.

What Do We Need to Protect?

https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f1.large.jpg

Firewall Placement

Most firewalls are used to protect the entire Local Area Network (LAN). In this
case, the Internet router usually acts as the firewall. A properly configured
Internet router filters out the IP numbers used locally (for instance 10.*, 127.* ,
192.x.y.*) to prevent IP spoofing. It should also filter out all packets from the
outside with an IP number that normally can come only from the inside. Any
packet in this category can only be an attempt to trick your machines, and it
should be denied access immediately. Next, filter out any outgoing IP traffic
that doesn't have your registered class of IP numbers. This is not only to
prevent sending out bogus packets (or to keep your people from spoofing the
Internet), it's also for your own security. In particular, Windows products tend
to disregard RFCs. One day I found a Windows 95 machine that shared its local
printer by giving it the IP number 6.6.6.6. If your Internet router doesn't filter
out these packets, you might be routing your printed documents onto the
Internet.

Another frequent use for firewalls is to protect a single machine. If you want to
protect a single machine with a firewall, you must make sure it doesn't depend
on anything outside the firewall; otherwise, your firewall serves no purpose
apart from giving a false sense of security. If the protected server is using data
from an unprotected PC, someone can falsify the information on the PC in
order to do potentially serious damage to your server's data. Someone gaining
access to the PC could also reach the server by pretending to be the trusted PC
user. If the machine relies on other machines, you want to place your firewall a
bit further upstream, so that it can protect those machines as well. NFS is a

https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159f2.large.jpg

good example of an application you would not want to allow through the
firewall in this setup. This type of firewall is easy to configure. Block all
protocols not in use on the sensitive server, forward only those packets with
the server's IP, and don't forget to prevent IP spoofing of your server's IP
number from the outside.

A script to set up typical firewall rules to protect a single machine or small
subnet is shown in Listing 1. Script for Typical Firewall Rules.

Obviously, real networks aren't as simple as the above examples. Most
networks have various machines which are multi-homed and part of different
subnets. Larger organizations, like schools, have a problem in that a lot of
people have physical access to the Ethernet. The best way to protect portions
of these networks is to use subnets on physically separate cables. For example,
it would be an excellent policy to give the system administration office a
separate subnet, since system administrators often need to use the privileged
accounts.

The Complex Network

Quite often a network you wish to protect does only a few limited tasks. On a
typical administration network, people want to use the Web, e-mail, POP and
quite often a telnet connection to the administrative database server (hidden in
a Windows application). Masquerading works best for these networks. It makes
sure the individual machines in the administrative network are not reachable
(unless the masquerading host itself is compromised, which is next to
impossible if it doesn't run any services), while keeping all the basic
functionality of being connected to the Internet. This has an additional
advantage. Often access to database servers is protected through a TCP
wrapper, which allows only a certain set of hosts to access the database. For
each new client machine added to the network, an entry into the appropriate /
etc/hosts.* files must be made. With masquerading, this entry isn't necessary,
since the new machine will be masqueraded and the IP number of the
masquerading host is already known to the database server.

If you cannot physically separate the administrative network, you might want to
consider using some form of encryption. Kerberos is often used in these cases,
but you could also use an ssh-PPP tunnel (ssh is a key-pair encryption
algorithm). With ssh you can easily create a virtual private (encrypted) network
between your masquerading host(s) and your database server. That should
take care of any eavesdropping risks from students booting rogue Linux
machines on the network.

With complex networks, it is important to know who the threat is. The threat
typically comes from the inside and not the outside, which is protected by the

https://secure2.linuxjournal.com/ljarchive/LJ/040/2159l1.html

Internet Router/Firewall machine. Also, don't forget to protect yourself against
your modem pool—IP spoofing can occur from there as well.

Configuring the Firewall

There are basically two ways of configuring your firewall. The first and most
secure setup is “Deny everything unless we explicitly allow it.” The disadvantage
is that you will have a lot of users wondering why certain things don't work. You
might consider this approach in a setup where your firewall protects a very
small subnet containing only servers and no clients. A script for setting up this
type of firewall is shown in Listing 2. “Deny Everything..” Firewall. This type of
firewall requires quite a bit of knowledge about how certain protocols work. Do
not attempt it unless you have proper documentation and plenty of time to
devote to it.

The second, and easier setup is “Allow everything unless we explicitly deny it.”
This one makes your network fairly open, but controls a few dangerous or
unwanted protocols. For example, some ISPs use this feature to block all “CU-
SeeMe” traffic, as this type of traffic can congest their entire network. A script
setting up this type of firewall is shown in Listing 3. “Allow Everything...”
Firewall.

How Do We Monitor What is Going On?

As you might have noticed in the two previous examples, all deny rules have
the option -o set to instruct the Linux kernel to explicitly log all denied packets
using the syslog facility. If you deny packets without logging them, someday you
will be bug hunting for hours before you realize the problem was a packet filter.
Depending on how you have configured the syslog daemon (/etc/syslog.conf),
these messages will show up in either the /var/log/messages file or the /var/
log/syslog file. You should regularly check these log files on your firewall
machines. Make sure there is enough disk space to log even an attack that
floods you with messages. If possible, use a separate partition for your log files.

Here are a few log entries from our syslog to demonstrate some common
problems. These log entries come from our Livingston router, as well as our
Linux machine.

Jan 2 15:17:57 unreachable.xtdnet.nl 15 deny: UDP from 130.244.101.74.137
to 194.229.18.53.137

This is perhaps the most frequent hit our firewall rules get. Port 137 is the
NetBios name-service port used by Microsoft Windows machines to look up
names in the local network. However, poor implementation and bad
configuration often lead to Windows machines making NetBios requests to
another machine. These requests might have been generated by a user's telnet,

https://secure2.linuxjournal.com/ljarchive/LJ/040/2159l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2159l3.html

FTP or even WWW request. You might want to enable your deny rule without
the -o flag, so that your log file is not filled up with these very common errors.
One of our clients had his root partition entirely filled with netbios logs,
stopping his genuine logging from operating and almost crashing the server.

Jan 2 17:12:34 unreachable.xtdnet.nl 2 deny: TCP from 10.0.3.1.61007 to
194.229.18.29.80 seq 1471CB0, ack 0x0, win 8192, SYN

This message is caused by a badly configured host. The IP numbers in the
10.*.*.* range are reserved for local area networks. We found out this host was
a misconfigured masquerading host on the Internet, which used its IP number
from the local masqueraded network instead of its real Internet IP number.
This misconfiguration traveled through many other routers before being caught
by our firewall. Large backbone ISPs don't filter out bogus packets, resulting in
easy IP spoofing from almost anywhere on the Internet to anywhere else. Don't
trust your ISP to filter out anything; do it yourself.

Jan 20 06:57:33 unreachable.xtdnet.nl 14 deny: UDP from xx.yy.zz.aa.904
to 194.229.18.27.1112

Our firewall proved its value on this attack. Someone tried to ask our RPC
daemon (udp port 111) which daemons we are running. Even though an
attacker can still find most RPC services by doing a total port scan, it is still a
good idea not to give them the information so readily. There is almost never a
need to have RPC services exchanged with a server on the Internet. Port scans
are easily spotted because they leave a giant trace of occurrences of all your
filter rules in your log files.

Jan 3 22:16:55 unreachable.xtdnet.nl 44 deny: TCP from xx.yy.zz.aa.17231
to 194.229.18.27.23 seq 7A3731D0, ack 0x0, win 49152, SYN

This is another true firewall hit. We banned this host after we received a couple
of the above attacks on our RPC server. Since the postmaster of this particular
site didn't respond, we blocked access for the host on all ports.

Feb 4 09:10:17 polly.xtdnet.nl kernel: IP fw-in deny eth1 UDP 0.0.0.0:68
255.255.255.255:67 L=328 S=0x00 I=4 F=0x0000 T=60

Port 68 is bootp (DHCP). Some machine was broadcasting and asking for a
bootp server. This could be a Win95 computer or even some intelligent HUB
which needs an IP number to support SNMP. (This one had us puzzled for
months.)

Jan 27 09:47:00 masq.xtdnet.nl kernel: IP fw-in deny eth1 TCP 10.0.4.6:1992
204.162.96.21:80 L=48 S=0x00 I=2993 F=0x0040 T=255

This machine didn't define the masquerading host as router, so it tried to be
smart—but it still didn't find the right gateway.

Jan 28 12:23:50 masq.xtdnet.nl kernel: IP fw-in deny eth0 TCP 194.229.18.2:3128
194.229.18.36:2049 L=44 S=0x00 I=23859 F=0x0000 T=63

To understand what happened, we need to dig a little into the inner workings of
TCP/IP. All connections are identified by a unique combination of source IP,
source port, destination IP and destination port. However, to find well-known
services, such as telnet, WWW or cache, it is a common practice to use specific
ports. To uniquely identify connections to such a well-known service, a random
but unique port is allocated on the local machine. If this machine now makes a
connection to a well-known service on another machine, it is guaranteed to
have a distinguishable TCP/IP connection. Port numbers below 1024 are
normally not assigned as random ports, because they're often used or reserved
for the well-known services.

Now, let us look back at the log entry. The computer 194.229.18.36 wanted to
set up a connection to the machine 194.229.18.2 on port 3128 (the cache
server). It first asked the operating system for a unique random port and was
given port 2049. It then initiated the connection to the cache server
(194.229.18.2 port 3128). The cache server responded by sending its answer
back in a packet to 194.229.18.36 port 2049. But 194.229.18.36 is also using
firewall rules, and one of its rules is to block all attempts to connect to the NFS
service, which, unlike many other well-known services, is not located on a port
below 1024, but on port 2049. Thus, the cache server's response is filtered out.
You can solve this problem of distinguishing the connection based on whether
or not it originated from your site. You can determine the point of origin by
whether the SYN or ACK flag in the TCP header is set. The correct way of
filtering out connections to port 2049, while still allowing connections to be
initiated from it, is as follows:

/sbin/ipfwadm -I -i deny -S 0.0.0.0/0 \
 -D 0.0.0.0/0 2049 -P tcp -y -Weth0 -o

Jan 2 11:22:58 unreachable.xtdnet.nl 38 deny: TCP from 193.78.240.90.8080
to 194.229.18.2.1642 seq F72DA7C6, ack 0xED8FDEA1, win 31744, SYN ACK

A similar situation happened here. Port 1642 was assigned by some machine as
the random unique port, but the firewall decided that port 1642 was bad.
Livingston Portmaster software uses this port to communicate between a Unix
host and their routers/firewalls, so that is why we filter these ports for the
outside.

In general, try to avoid blocking high ports, and if you do block out a high port,
block that port only for the machine that needs the protection. For example,
block port 1642 only for your routers and terminal servers, but leave it open for
Unix servers. Then, if the router/firewall receives a packet destined for port
1642 on an internal machine, it will pass it to that internal machine even if port
1642 on the router itself is blocked.

A minor drawback is that we are giving away a bit of information to potential
hackers. They can check all your IP numbers to see which ones are routers,
firewalls or Unix hosts that talk to the routers or firewalls; however, they can
usually find that same information through other means as well. For example,
the traceroute command yields a lot of information about which machines are
used for packet transfer and are therefore either a router, a firewall or both.
You can also use the -y option mentioned in the previous example. Not all
hardware routers/firewalls offer these options.

Random Notes

Most attacks on your firewall are simple probing. This is analogous to a person
trying your door handle to see if the door is locked. The above firewall rules
should protect you against these without much of a problem.

What if a person is trying to find out more than simply whether your door is
locked? What if someone appears to have a true interest in you? The first sign
of this will be a sudden increase in the number of hits on your firewall from a
small set of hosts or networks. Your first step should be to contact the system
administrator of those systems. If you are really feeling paranoid at this stage,
don't e-mail postmaster and don't trust the technical support phone number
on their web site. Look up the general number of the company in a paper
phone book or dial an operator to assist you. Once you get through to the
company, tell them what is going on and offer them as much information as
possible. If you can trust the administration of the sites, this usually guarantees
that the attacks will stop.

Only rarely does this approach fail—either because the company's
administrators are colluding in the attack, or because the attack is coming from
a large provider who gives its users access to a Unix shell. For these providers,
it is impossible to trace the abuser just from the timestamp of your firewall logs
because dozens of people would have been logged on at the time.

So far, this has happened to us only once. We suspected that the
administration itself was responsible for the probes and hacking attempts to
our sites. We decided to let the hacker through our firewall temporarily, so we
could gather more information on what they were doing.

We used two tools to gather information. First, we replaced the normal Internet
super server (inetd) with xinetd. This version of inetd has the option to log an
incredible amount of valuable information. Second, we needed to run a special
version of our nologin program to make sure the connection stayed up long
enough for us to send out an ident probe.

/* nologin.c */
main() {
 printf("You have no login on this machine.\n");
 sleep(60);
}

We enabled the services to be probed in /etc/xinetd.conf. For example to set up
the remote login shell rsh:

service shell
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = nobody
 server = /bin/nologin
}

And we enabled ident lookups and remote host logging for all services:
defaults
{
 log_type = FILE /var/log/xinetd.log
 log_on_success = HOST USERID
 log_on_failure = HOST RECORD USERID ATTEMPT
 instances = 10
}

And finally we were ready to open our firewall for these pseudo services on our
host.

Be aware that the described level of logging is very high—your log files will be
extremely large. But don't be tempted to disable the logging for real services.
For example, we logged a few apparently harmless finger requests which were
followed by probes from another machine on several occasions. The machines
responsible for the probes were very uninformative. But this hacker made the
mistake of using his normal machine for a finger command first, to see if any
system administrator was logged on, before he started his probes from the
secure system. And his regular machine was running an ident daemon, so our
logs recorded his user name.

Firewalls Are Needed

As can be seen by the “Ping of Death” example, firewalls can be a life saver.
Furthermore, we have seen that it is fairly easy to configure the firewall, once
you have some knowledge about how the TCP/IP protocol works.

When visiting one of our clients recently, I peeked at their two firewalls briefly.
Both firewalls had an uptime of 108 days. They had been up ever since
installation of Alan Cox's ping patched Linux kernel version 2.0.23. One firewall,
protecting the main Internet server, logged four attempts to send oversized
ping packets. It also prevented access by some students trying to use illegal IP
numbers (whether by mistake or on purpose was not known). It also logged
various misconfigured machines sending out bogus IP traffic. The firewall that

protects their main Internet server (which also handles a full Usenet news-feed)
had routed close to a terrabyte of IP traffic. Their firewalls have proven to be a
very stable and valuable addition to their network security, where they have to
be concerned about not trusting internal machines as well as external
machines and where total control of the Ethernet cables is not guaranteed
throughout the entire complex.

Glossary

Paul Wouters started his Unix experience with Linux 0.99pl8, so he could
program an MUD at home. He is currently a system administrator for Xtended
Internet, where his exposure to a wide variety of Unix flavors has only
increased his love for Linux. At work he can be found idling at earthmud.org.
He can be e-mailed at paul@xtdnet.nl.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2159s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tripping up Intruders with Tripwire

Kevin Fenzi

Issue #40, August 1997

Tripwire is a program designed to help you discover if someone is tampering
with your system.

You run the latest Linux kernel, read the Linux-security-alert mailing list, install
security patches as soon as they come out. Your Linux machine is secure. Right?

Alas, it's not very likely. Even if you install the newest patch, someone might
have already compromised your machine and replaced your system binaries
without your knowing it. In that case, fixing the hole which allowed them
entrance is just part of your problem. Even with quick turn around in the Linux
community (we have the source code after all) for security vulnerabilities being
spotted and someone coming out with a fix for it, there will always be a window
of opportunity for someone to compromise your machine.

What more can you do to close this window? How can you know when some
intruder has broken it? Enter Tripwire. Tripwire has a pretty simple concept. It
takes checksums of all your important files; then later, you can check your files
against the Tripwire database and determine if any change or tampering has
occurred. The current version of Tripwire (1.2.2) has not been updated since
08/94, so it is a very stable program. There is not much that can go wrong with
it.

Some cracker tools have been designed to modify or replace system binaries
(login, telnetd, vmlinuz, ps, ls, etc) and then make them appear to be the same
as before. Usually the methods are crude, consisting of just the modification of
the date and size of the file (back to their original values). A casual glance shows
all to be fine. Some intruder tools even try to get the modified or replaced
binary to match a simple checksum. For instance, change the binary so it will
pass a simple test such as:

cmp /bin/login /cdrom/untouched/bin/login

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In order to make sure this doesn't happen, Tripwire is capable of using all sorts
of checksumming algorithms. Tripwire comes with: The RSA Data Security, Inc.
MD5, MD4 and MD2 Message Digest Algorithms, Snefru (the Xerox Secure Hash
Function), SHA (the Secure Hash Algorithm) and Haval code. The authors of
Tripwire suggest that MD5 is sufficient for most checksumming, and critical files
might also be checked with Snefru. Checking with one checksum like MD5 is
pretty good, but imagine the difficulty of creating a binary or file that passes 2
or 3 (or more) different checksums. Few system intruders have the time/
resources to even make the attempt.

Using the Tripwire database, you can check all your critical files for tampering.
Now, how do you know if someone has tampered with your Tripwire binary or
Tripwire database? After all, if the intruder can modify your Tripwire database,
you are back to square one.

Several different methods exist. The easiest, and I think the best for most
security conscious Linux users, is to place Tripwire and the Tripwire database
on a read-only floppy disk. Since most Linux machines have a floppy drive and
few are in use all the time, it's a good match. The Tripwire authors also suggest
that if you are very concerned, you can print out the Tripwire database. It's hard
to imagine an intruder being able to modify documents printed before they
broke in. Other possible schemes include: remote mounting the Tripwire binary
and database from another more secure machine read-only, putting it on a
write-protected Zip disk, or even getting an old, small hard drive that has been
jumpered to hardware enable read-only and put it on that. The idea is to put it
on some media that you can make read-only in hardware. It does you no good
to place Tripwire where an intruder can mess with it. If the machine you want
to check is in a place accessible to many people, keep your Tripwire floppy in a
safe location and bring it to the machine only when you want to check your
files. You can also NFS mount it from a remote, more secure machine with a
floppy.

Okay, you've decided to install it. How do you go about that? Well, grab the
latest Tripwire source (Tripwire 1.2 patch level 2). It should compile just fine
under most Linux distributions. I had no problems compiling it under a Red Hat
4.0 system out of the box. Read through the README file for a quick overview,
and if you want more details, take a look at the PostScript design paper. There
is also a Tripwire RPM available, but I would recommend against using it, as you
can't specify where it should be installed.

Make the choice of the directory where your Tripwire binary and Tripwire
database will reside before you compile. Tripwire hard codes these paths to
prevent tampering.

Once Tripwire is compiled, take your machine down to single-user mode. I
know, you don't want to lose that many months uptime, but you must make
sure you are the only one on the system and no one has a remote connection
to your machine that can be used for tampering. If you are particularly
concerned, you might consider a clean install of your system before installing
Tripwire in order to be sure all your binaries are clean. In single-user mode,
mount the media on which to place Tripwire and the Tripwire database. (Mount
it read/write this time, so you can copy Tripwire onto it.)

Install Tripwire. Next, determine what binaries are important for Tripwire to
check. It is almost useless to check files that change a lot (user files). Tripwire is
mainly for your important system binaries. My Tripwire configuration checks: /
etc, /sbin, /bin, /usr/bin, /lib and /vmlinuz; it also checks some files in /dev. Even
these are going to change more than you might think. If you select too much,
your Tripwire reports are going to be too full of hits for you to notice a real
break-in.

After you get your tw.config file set up for the directories you want to change,
it's time to make your new, clean Tripwire database. Type:

tripwire -init

Relax for a while. It takes Tripwire a fair amount of time to generate all the
checksums. Using just the default MD5 checksum on all the directories I
mentioned above takes my dual 166MHz Pentium about 5 minutes (faster disks
would help).

After Tripwire has finished creating the database, remove your Tripwire media
and make it read-only (jumper, write-protect notch, etc). Then, bring your
machine back up to full multiuser mode and mount your Tripwire media.

Now, to make sure things are working, try changing a file in one of the
directories listed in the Tripwire database. Run Tripwire and make sure it
catches it. It will output a very nice, verbose report showing which files have
changed and in what way they have changed (modify time, checksum, etc).

I have my Tripwire set up to run each night in a cron job and mail the results to
me. You can have yours do the same or just run it when you suspect something
is wrong. I would recommend you run it pretty often. You never can tell when
you might be compromised. Checking a short Tripwire report every day is a
small investment in security that can really pay off. You can still rerun Tripwire
whenever you think there might be a reason for it. (Keep in mind that an
intruder might modify your mail from the cron job to make it look like nothing
happened.) For that reason, I also run Tripwire periodically when I have nothing
else going on (while “on hold” for those long tech support calls, etc).

You will find that as you update packages and config files, your Tripwire
database flags more and more files; periodically, you need to take your
machine back down to single-user mode, remount your Tripwire media read/
write and update your database with a different command:

tripwire -interactive

Make sure you know why each file is different now. If you are at all unsure,
don't update that file in the database; instead, replace it with a fresh copy off
your distribution site or CD-ROM and then rerun Tripwire.

It's that simple. You now have a nice detector capable of telling you when
someone has been tampering with your files, and the peace of mind that
comes with knowing your Linux box is the most secure one on your network.

Kevin Fenzi has been fascinated with Unix security since he saw his first crack
program. He currently does programming and consulting on many flavors of
Unix, but his Linux machine at home is his favorite. He can be reached via e-
mail at kevin@scrye.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

TCFS: Transparent Cryptographic File System

Ermelindo Mauriello

Issue #40, August 1997

A description of how the TCFS secure file system works and why you should use
it.

Current network technology makes it cheap and convenient to share resources
over a network. Typically, a computer network consists of one server with direct
access to a resource (file system, printers, CPU time). The server then allows
several clients to access the resource. A file system is a typical resource which
can be shared over a network, and Sun's NFS is the most widespread protocol
for file system sharing. An important feature of NFS is its complete
transparency to the application using it. The application has no need to know
whether it is accessing a file on a local file system or from a file system shared
over a network.

NFS, designed by Sun several years ago, does not address the security issues
arising in this context. NFS is simple in structure and assumes a strong trust
model: that is, the user trusts the remote file system server and the network
with his data. This poses several risks. The data on the server are available to
the server superuser; also, users on the network may assume other identities
by changing their IP numbers or their user IDs, allowing data to be read while it
travels on the network. Because of this, it is necessary to address the security
issues by protecting the data while stored on a remote server and during
network transfers.

TCFS (Transparent Cryptographic File System) has been developed at the
Dipartimento di Informatica ed Applicazione of the Universita' di Salerno (Italy)
and is currently available for Linux. You can look at TCFS as an extended NFS. It
acts just like NFS, but allows a user to protect his/her files using encryption.

TCFS requires an NFS server running Linux with the EXT2 file system. It must be
used with 2.0.x kernels, since it is based on Olaf Kirch's NFS module. TCFS can
be used as a kernel module (and inserted using the insmod utility) or can be

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

compiled into the kernel. When you start the TCFS module or when you boot (if
TCFS is statically linked), you will find four copies of the tcfsiod daemon
running.

TCFS works as a layer under the VFS (Virtual File system Switch) layer, making it
completely transparent to the applications. The security is guaranteed by
means of the DES (data encryption standard) algorithm. Keys are kept in a
special database (/etc/tcfspasswd) which stores keys encrypted with the user's
login password. To maximize the level of security, it is best to keep to a
minimum number of trusted entities. A TCFS user needs to trust only the kernel
and the superuser of the client machine accessing the data. We stress that this
minimal level of trust is necessary, since you cannot protect your data from the
kernel and the superuser. Both can access memory any time that they want.
Our trust model fits perfectly the typical scenario in which TCFS is used: a
network of workstations with limited disk space, each used almost exclusively
by a limited number of users (you can even think of each user as the superuser
of his/her own workstation) and a remote file server sharing files with all the
workstations.

In designing TCFS we were interested in providing a robust security mechanism
at the lowest possible cost to the user. The security mechanism must guarantee
that secure files are not readable:

• by any user other than the legitimate owner,
• by tapping the communication lines between the user and the remote file

system server,
• by the superuser of the file system server.

We also protect sensitive meta data—for each file; not only the content but also
the filename is encrypted. We hide internal file data dependencies using a DES
in the chaining block cipher.

In TCFS, security acts in a transparent way. Secure files can be accessed in the
same way as local files—the user has only to authenticate himself to TCFS
before starting to work. A special flag, which looks like an EXT2 extended
attribute, marks encrypted files to make them distinguishable from
unencrypted ones. Thus, TCFS is able to store both secure and unsecure files
on the same file system depending on whether or not this flag is set.

We give special attention to making TCFS completely transparent to the file
server. Transparency allows the superuser on a server to perform all
administration duties in that we don't change the data structures of the file
system itself. Special work is needed for a directory with the secure flag
enabled. Files in a secure directory are stored with encrypted filenames, and

new files inherit the secure flag, so that they too are secure. Since TCFS acts like
a file system in a VFS (virtual file system) layer, standard system calls can be
used to access files on the TCFS. No special flags are needed by the open() or
create() system calls. For this reason, all applications can use the new features
without being recompiled.

The Working of TCFS

To explain the mechanics of TCFS we will first review the working of NFS. NFS is
a simple distributed file system that allows a file system server to export its file
systems to several clients. Applications, running on a client, access the remote
file system via the usual system calls. The client kernel checks to see whether
the requested data is on a local file system or an NFS file system. In the latter
case, the kernel issues a request to the server; for example, if the application
needs to read a block from a file on a remote file system, the client operating
system issues a read request to the server. The server, upon receiving a read
request, reads the data from its local file system and sends it to the client,
which then passes the data to the application. It is important to remember that
NFS provides a minimal form of user authentication. The server receives from
the client the uid of the user requesting the data and checks if that user is
allowed to access the file containing the data. Thus, it is possible for a user to
change his uid on the client (for example, the superuser of the client machine
can use the command su to become any user) or to modify the NFS client so
that a different uid is provided with the request.

When using TCFS, files can be stored in encrypted form on the server file
system with a different encryption key for each user. The encryption key is
provided by the user to the TCFS client through the tcfslogin utility. (A detailed
description of the TCFS utilities appears below.) Reading a block of data from
the server is achieved following the NFS protocol, with one important
exception: once the requested block is received by the TCFS client, it is
decrypted before being passed to the application. Similarly, a block of data
written by an application is encrypted with the user's key before being passed
to the TCFS server. During a read or write operation the user's encryption key
never leaves the TCFS client, and data travels between server and client only in
encrypted form. Moreover, this approach addresses the problems related to
user authentication. While it is still possible for a user to impersonate the
legitimate owner of a file, he will receive only encrypted data.

Installing TCFS—Server Side

Set up your TCFS server just as you would an NFS server—by exporting the file
system you wish to share with your clients. Usually this is done by editing the /
etc/exports file and restarting the NFS daemons (rpc.mountd, rpc.nfsd).

Retrieve xattrd from the TCFS package. It can be found in the linux/fs/tcfs/
contrib/xattrd directory of the TCFS distribution. Copy xattrd to the daemon
directory, usually /usr/sbin, and add it to your rc files. For the Slackware
distribution, edit the /etc/rc.d/rc.inet2 file to look like Listing 1. rc.inet2 File.

For Red Hat or any other distribution using the System V init script model,
create a file in the rc directory (/etc/rc.d/init.d in Red Hat 4) for starting and
stopping the xattrd daemon and make symbolic links in the rc\#.d directories to
start it. In Red Hat you can do this using the tksysv script. For an example of
building the xattrd rc scripts, see Listing 2. File for Building xattrd Script.

Now, reboot the system or run xattrd as root to prepare the server for TCFS.
Notice that xattrd reads /etc/exports at startup and so if you change /etc/
exports, you must restart xattrd. xattrd adds functionality to the NFS server and
is not meant to be a replacement; therefore, it is possible to use the same
server as both a TCFS server and an NFS server.

Installing TCFS—Client side

Installing TCFS on the client is somewhat more complex, since most of the work
is performed by the client—the kernel must be rebuilt to support TCFS.

The TCFS distribution provides a tar file to be unpacked in the /usr/src
directory. We assume that the kernel sources are in the /usr/src/linux directory
(this is the standard for most Linux distributions). Install TCFS with the following
steps:

1. Untar TCFS to create the directory /usr/src/linux/fs/tcfs which contains the
code for TCFS and its related utilities.

2. Apply the tcfs.diff patch found in /usr/src/linux/fs/tcfs/patches to the
kernel. Do this by changing directories to /usr/src and then typing patch <

linux/fs/tcfs/patches/tcfs.diff.
3. Recompile the kernel. In the FileSystem section you will be asked about

TCFS. It is possible to install tcfs as a module or built-in. In both cases it is
necessary to recompile the kernel following the usual procedure.

4. Install the utilities. Once a kernel with TCFS support has been installed,
change directory to /usr/src/linux/fs/tcfs/contrib/binaries where you will
find the binaries for the TCFS utilities, and type make<\!s>install. It is also
possible to compile the source code for the TCFS utilities located in /usr/
src/linux/fs/tcfs/contrib/src.

5. Enable use of TCFS. The superuser of the client must generate a key for
each user using the tcfsgenkey utility. This requires the user's password,
so it must be done with the help of the user. The utility tcfsgenkey builds a
database (/etc/tcfspasswd) where the keys used to encrypt files are

https://secure2.linuxjournal.com/ljarchive/LJ/040/2174l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2174l2.html

stored. These are kept encrypted using the user's login password as key.
In future releases of TCFS we are planning to provide support for smart
cards, thus dispensing with the need of keeping the key (albeit in
encrypted form) on the client.

6. TCFS utilities. The command mount provided by TCFS is capable of
handling TCFS mount operations. We encourage you to use our version of
mount in place of the standard mount command, since TCFS needs some
information that the standard mount doesn't provide. To mount a file
system with TCFS, type:

mount -t tcfs server:/remotepath /localpath

TCFS also supplies the passwd command which is used to update the
encryption key database. It acts like the standard passwd command, but also
updates the tcfspasswd file after changing the password. Changing your
password with the old passwd command will result in the wrong encryption key
being extracted from /etc/tcfspasswd, and thus, in a complete loss of data.

After login, each user has to execute tcfslogin. Utility tcfslogin requests the
user's login password to decrypt the encryption key and pushes the cipher key
in the kernel module. To remove the key, the user must execute the utility
tcfslogout, which needs a TCFS file system mounted to work. In future releases
we plan to include support for PAM (Pluggable Authentication Module), making
it unnecessary to input the login password twice.

The lsattr and chattr commands act just as they do in EXT2. The TCFS versions
support a new flag, X, to enable encryption of files. You can change status of a
file (encrypt or decrypt) by typing:

chattr $ <+|-> $X

An Example

Suppose you have a server named foo and a client named bar and suppose you
export the directory tree named /exports from server foo to client bar. For this
to be true foo must have the following line in /etc/exports:

/exports bar(rw,insecure)

Now, login as root on bar and mount /exports by typing:

mount -t tcfs foo:/exports /mnt/tcfs

This command causes the remote file system, /exports@foo, to be mounted on
the local file system, /mnt/tcfs@localhost, via a TCFS layer.

Now, suppose your login is usdm1, and you own a directory named /mnt/tcfs/
usdm1. Login as usdm1 on bar and execute tcfslogin; doing so enables you to
use encryption in your directory /mnt/tcfs/usdml. If tcfslogin is not issued, a
permission denied error will be issued when attempting to access files with the
X flag set.

Performance

In order to evaluate the overhead introduced by encryption of the data sent
over the network, we performed a set of tests. We ran the test in the following
framework:

• The client machine running TCFS on the Linux 2.0.23 kernel is a Cyrix x686
166MHz processor

• The server machine running as the NFS+xattrd file server is an Intel
Pentium 133MHz processor with a 2GB fast SCSI disk.

Since encryption/decryption is a CPU-bound task, having a fast client to
perform encryption results in better performance. TCFS makes use of standard
VFS caches—no special caching is needed.

The real time values shown in Table 1 and Table 2 were obtained using the time

command with the following options set for the read operations:

time dd bs=xxx if=file of=/dev/null count=n

and for the write operations:

time dd bs=xxx if=/dev/zero of=file count=n

The tables show the following results:

• The overall performance of TCFS for write operations is close to NFS
performances plus DES overhead. In the write, we suffer due to the lack of
a cache system, since data are written directly to the server file system.

• The performance of TCFS for read operations seems to hide part of the
DES time, since VFS caches reduce server I/O.

• Some extra cost is paid by TCFS for I/O of unencrypted files due to
handling of extended attributes. In NFS several getattr calls are needed to
update inode caching. In TCFS we need a getattr and a geteattr to update
inode caching. This causes some extra overhead in TCFS I/O.

Use of other ciphers will result in different performances. We are planning to
use IDEA, RC5 and other ciphers as optional modules for TCFS.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2174t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2174t2.html

Resources

Ermelindo Mauriello (ermmaui@globenet.it) was born in Avellino, Italy on
December 10, 1972. He is a computer science student at the Dipartimento di
Informatica ed Applicazioni “Renato M. Capocelli” of the Universita' di Salerno in
Italy. He has been working on the TCFS project since 1995.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2174s1.html
mailto:ermmaui@globenet.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Wrap a Security Blanket Around Your Computer

Lee E. Brotzman

Issue #40, August 1997

TCP_wrappers provide a simple, elegant and effective means to safeguard your
network services.

With the Internet growing by leaps and bounds, the security of computer
systems has become a major focus of large corporations, small businesses and
individuals alike. Hardly a week goes by without a security flaw being
discovered in some network. Many companies are reducing the threat by
installing firewalls between their internal networks and the Internet, but this
option is generally too expensive and cumbersome for single users running
Linux from home or office. TCP_wrappers was written by Wietse Venema,
Eindhoven University of Technology, The Netherlands. It provides a simple,
elegant and effective means to safeguard your network services from being
accessed and possibly abused by intruders.

In this article we will discuss what TCP_wrappers are and how they work, and
how to configure TCP_wrappers to protect your machine from unauthorized
access. We'll also discuss some of the more advanced features of
TCP_wrappers which provide detailed logging and can even help track attempts
to break into your machine.

What are TCP_wrappers and How Do They Work?

First, we need to know how a transmission control protocol (TCP) connection,
such as telnet, is accomplished. TCP network connections are based on the
“client/server” model. The telnet program is a client that communicates with a
server program, or daemon, called telnetd or in.telnetd, depending on how
your machine is set up. Since most Linux distributions use the name
in.serviced in the directory /usr/sbin for network daemons, I will use that
naming convention for the remainder of this article.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

All requests for network services first go through the “Internet daemon”, inetd.
(As with all things in life, there are exceptions to this rule, see “What
TCP_wrappers Cannot Do” below.) This daemon uses two configuration files to
determine how to respond to requests for network connections. The file /etc/
services lists the names of particular services and the port numbers for those
services. The file /etc/inetd.conf lists the names of the services and the names
of the programs or daemons providing the services. Listing 1 and Listing 2
contain some sample lines from the /etc/services and /etc/inetd.conf files.

If I sit down at my.linux-box.com and type the command:

telnet your.machine.com

My telnet client sends a packet of information containing (among other things)
the Internet address of the source my.linux-box.com, the Internet address of
the destination your.machine.com and the port number for the connection.
The port number for telnet is 23. inetd looks up port 23 in /etc/services and
finds the service name telnet. It then looks up telnet in /etc/inetd.conf and finds
that it needs to run the daemon called in.telnetd, listed in the rightmost column
of Listing 2. inetd runs in.telnetd connecting it to port 23 and then goes about
the business of listening for more connections. in.telnetd responds to my client,
asking for a user name and password and starting up the telnet session.

What if you don't want anyone else to telnet into your computer? You can
modify the code for in.telnetd to look at the source address of the connection
request and to reject any addresses from outside your local machine or
domain. If telnet were the only network service this would be easy, but there
are dozens of network services, and it would be a nightmare to modify every
daemon to limit access to your machine.

At this point TCP_wrappers comes to the rescue. The wrapper program is a tiny
daemon that stands between inetd and network daemons such as in.telnetd

and in.ftpd. Since all TCP connections are started up in basically the same
fashion, a single wrapper program can be used to control access to almost all
TCP network services.

When wrappers are installed, the Internet daemon is reconfigured to run the
wrapper instead of the ordinary network daemon. The wrapper checks the
source address of the connection and the service it wishes to connect to and
decides whether to allow the connection. If your.machine.com denies my
request for a telnet session, all I see is a dropped connection. If the request is
allowed, everything proceeds normally, and the wrapper never actually
interacts with my telnet client. In either case, the wrappers write a note in the
system logs to let you know whether I was successful in connecting to your
machine.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2180l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2180l2.html

Installing TCP_wrappers

Every major Linux distribution comes with TCP_wrappers installed as part of
the networking package. To see if you have TCP_wrappers installed on your
machine, look in the /etc directory for two files called hosts.allow and
hosts.deny. These are the configuration files used by the TCP_wrapper daemon,
tcpd. You can also look at your /etc/inetd.conf file for lines like this:

telnet stream tcp nowait root /usr/sbin/tcpd \
 in.telnetd

The telnet option /usr/sbin/tcpd indicates that whenever someone tries to
telnet to your machine, he will first connect to the TCP wrapper.

TCP_wrappers is probably on your Linux system, so I won't go into the process
of compiling them from scratch in this article. See the sidebar “Where to Get
TCP_wrappers” for more information on how to download and install
TCP_wrappers.

Configuring TCP_wrappers

As I mentioned above, the TCP_wrappers daemon tcpd gets its instructions on
whether to allow or deny access from the two files /etc/hosts.allow and /etc/
hosts.deny. tcpd first scans /etc/hosts.allow for “rules” that match the particular
service and computer host name, then searches /etc/hosts.deny. If no match is
found, access is allowed. By default, most distributions ship TCP_wrappers
“Completely Open”, i.e., the files /etc/hosts.allow and /etc/hosts.deny are
empty, allowing access to all Internet services on your machine to everyone.

Before you configure TCP_wrappers, you must decide whether you want your
machine to be “Mostly Open” or “Mostly Closed”. Mostly Open means that most
services are available to most other computers on the Internet; this is useful for
blocking access to just a few troublesome sites or to close off one or two
services. Mostly Closed means that most services are closed off to most other
computers. For personal computers with normal at-home usage, Mostly Closed
is probably the way to go, and it is certainly the more secure option.

Let's look at a “Mostly Open” configuration first. Since we are allowing most
connections, the /etc/hosts.allow file is left empty. In the /etc/hosts.deny file,
let's put in a rule to deny access to telnet and rlogin to anyone coming from the
machine nasty.badguy.net and anyone in the domain cracker.org. The requisite
line in /etc/hosts.deny would be:

in.telnetd in.rlogind : nasty.badguy.net \
 .cracker.org

Note the leading “.” in front of cracker.org. It signals tcpd to deny access to any
machine in that Internet domain. Since the crackers at these sites probably
know how to exploit network services other than telnet and rlogin, you can
deny access to all services using the wild card ALL:

ALL : nasty.bad-guy.com .cracker.org

Other wild cards that can replace specific host names include LOCAL,

UNKNOWN, KNOWN and PARANOID. LOCAL matches any name without a “.” in
it, i.e., host names in your local domain. KNOWN and UNKNOWN refer to hosts
either found or not found in the Domain Name Service, respectively. PARANOID

matches any host whose name does not match its Internet address. This option
is not often used, since the wrappers are compiled to reject access to any host
that matches this condition before checking the hosts.allow and hosts.deny
files. To allow access to all network services to machines in our local domain,
we can put the following line in /etc/hosts.allow:

ALL : LOCAL

Now let's look at a “Mostly Closed” configuration. Remember that hosts.allow is
checked first, then hosts.deny and, finally, access is allowed only if no match is
found in hosts.deny. To close all services to all outside machines, we use the
following rule in our hosts.deny file:

ALL : ALL

In hosts.allow we list only those specific services we want others to use. Of
course, we still want to access all of our own services on our own machine.
Suppose that we also want to telnet into our machine from a shell account
provided by our Internet Service Provider at my.isp.net, and we want to allow
anyone to finger our accounts. The rules to put in the /etc/hosts.allow file are:

ALL : localhost
in.telnetd : my.isp.net
in.fingerd : ALL

Now, if we would also like to keep the crackers from cracker.org from using
finger to get information about us, we can modify this:

ALL : localhost
in.telnetd : my.isp.net
in.fingerd : ALL EXCEPT .cracker.org

As you can see, there is quite a bit of flexibility—but with this flexibility comes
the possibility of confusion and, even worse, error. If the configuration files for
TCP_wrappers are wrong, you may think you are secure, when in fact you are
not. To check your configuration and test its protection, Wietse Venema
provided two additional programs: tcpdchk and tcpdmatch.

tcpdchk checks the configuration files for any problems. It can tell if you have
used wild cards like ALL or LOCAL incorrectly, if there are nonexistent host

names in the access rules, if there are rules for services controlled by tcpd in
the /etc/inetd.conf file and much more. For example, the output from tcpdchk

for the above Mostly Closed configuration on my machine yielded the following
information:

tcpdchk -v
Using network configuration file: /etc/inetd.conf
>>> Rule /etc/hosts.allow line 6:
daemons: ALL
clients: localhost
access: granted
>>> Rule /etc/hosts.allow line 7:
daemons: in.telnetd
clients: my.isp.net
warning: /etc/hosts.allow, line 7: my.isp.net: \
 host not found
access: granted
>>> Rule /etc/hosts.allow line 8:
daemons: in.fingerd
clients: ALL EXCEPT .cracker.org
access: granted
>>> Rule /etc/hosts.deny line 10:
daemons: ALL
clients: ALL
access: denied

I used the -v switch for tcpdchk to generate more verbose output. Note that the
program says my.isp.net was not found, which is perfectly true, since it is a host
name made up for this example. Also, note that I did not get a similar message
for the equally fictitious .cracker.org. That is because it is for an entire domain,
and tcpdchk doesn't check if a domain is registered, but rather if a particular
host name is in the DNS.

tcpdmatch tests your configuration against a virtual request for an Internet
connection. You provide the name of the daemon and a host name, and it tells
you whether that connection would be allowed or denied. For example, if I
would like to know if the webmaster at www.linuxjournal.com can finger users
on my system, I would enter the following:

tcpdmatch in.fingerd webmaster@www.linuxjournal.com
client: hostname www.ssc.com
client: address 199.184.169.67
client: username webmaster
server: process in.fingerd
matched: /etc/hosts.allow line 8
access: granted

Note that tcpdmatch found the real host name of www.linuxjournal.com to be
www.ssc.com and reports its Internet address. The last line tells me that finger

is indeed allowed from this host.

In Practical UNIX and Internet Security, Second Edition by S. Garfinkel & G.
Spafford, O'Reilly & Associates, 1996, the authors state:

Programs like tcpdchk and tcpdmatch are excellent
complements to the security program tcpwrapper,

because they help you head off security problems
before they happen. Wietse Venema is to be
complimented for thinking to write and include them
in his tcpwrapper release; other programmers should
follow his example.

I wholeheartedly agree.

Tracking Usage with Wrappers

TCP_wrappers write a message into your system logs every time a connection is
requested, whether it is granted access or not. These entries in the logs above
are reason enough to have TCP_wrappers installed on your system. The
messages are written through the standard syslog facility and by default go to
the same place as mail transactions. On my Linux distribution, Caldera Network
Desktop based on Red Hat Linux, the default has been changed so that the
messages are written to the same log file as other daemons (LOG_DAEMON
facility).

In any event, when someone accesses my machine via telnet, a message like
this is placed in the /var/log/messages:

Apr 9 17:24:58 ads in.telnetd[15339]: connect from somewhere.else.com

If the connection was refused, the message would read:

Apr 9 17:25:15 ads in.telnetd[15604]: refused connect from someother.place.com

If I want to see all the telnet attempts in my log, I can simply type the command:
grep telnetd /var/log/messages

TCP_wrappers can give me even more information through the use of “booby
traps”. TCP_wrappers can be configured to run shell commands when certain
services are requested. Let's assume I have reason to suspect someone at
nasty.badguy.com is trying to use the Trivial FTP program (TFTP) to steal my
password file. In my /etc/hosts.deny file, I can put the following line (this
example is straight from the hosts_access(5) man page that comes with
TCP_wrappers):

in.tftpd : nasty.bad-guy.com : (/usr/sbin/safe_finger -l @%h |\
 /bin/mail -s %d->%h root) &

Access to TFTP is denied to all users from nasty.badguy.com. In addition, the
command:

safe_finger @nasty.badguy.com

is run, and the results are piped into a mail message sent to the root user with
the subject line:

in.tftpd->nasty.bad-guy.com

safe_finger is a command provided along with the TCP_wrappers that strips out
any “bad” characters, like control sequences and data overruns. Running
safe_finger @hostname generates a list of everyone currently logged into that
system. The strings %h and %d are called expansions, and tcpd replaces them
with the corresponding text for the host name and daemon process,
respectively. Other expansions include %a for the client Internet address and
%u for the client user name.

Now, this isn't a perfect solution, since our cracker friend may have disabled his
finger service or altered it to give false information; however, this example does
show us the power of the TCP_wrappers program.

Using Advanced Options

The access control language in the /etc/hosts.allow and /etc/hosts.deny files is
quite simple, yet powerful, but TCP_wrappers can be compiled to include even
more powerful extensions to the normal access controls. Instead of having the
line:

service : host

in the configuration files, you can have the line:

service : host : option : option ...

Where option can be allow, deny or many other advanced options.

To enable the advanced options, compile the wrapper programs with the -
DPROCESS_OPTIONS. The wrappers are compiled in this way by my Caldera/
Red Hat distribution. To check your distribution for the advanced options, run
tcpdchk<\!s>-a. On my system, I see the following output:

warning: /etc/hosts.allow, line 6: implicit "allow" at end of rule
warning: /etc/hosts.allow, line 7: my.isp.net: host not found
warning: /etc/hosts.allow, line 7: implicit "allow" at end of rule
warning: /etc/hosts.allow, line 8: implicit "allow" at end of rule

The message implicit<\!s>"allow" indicates my version of the wrappers is
looking for additional options in the /etc/hosts.allow file. If your distribution
does not have PROCESS_OPTIONS compiled in, you will not see this message.

Using the advanced options, we can do away with the /etc/hosts.deny file
entirely, since the options for "allow" and "deny" can be added to any rule. We
can change the logging level, control the priority (“niceness”) of the network
service, look up user names with the RFC 931 “ident” protocol and display
customized “banners” for each service.

More information on these advanced features can be found in the
hosts_options(5) man page included with TCP_wrappers, or in the Garfinkel &
Spafford book cited above (a must-read for anyone concerned with network
security). For now, let's convert our /etc/hosts.allow and /etc/hosts.deny files to
use the advanced options. The etc/hosts.deny file is no longer needed. In /etc/
hosts.allow we rewrite the rules as follows:

ALL : localhost : allow
in.telnetd : my.isp.net : allow
in.fingerd : ALL EXCEPT .cracker.org : allow
in.tftpd : nasty.bad-guy.com : spawn \
 (/usr/sbin/safe_finger -l @%h |\
 /bin/mail -s %d-%h root) &
 : deny
ALL : ALL : deny

In English, this says the following:

1. All services from our own machine are allowed.
2. telnet is allowed from my.isp.net.
3. finger is allowed from everywhere except hosts in the cracker.org domain.
4. tftp is not allowed from nasty.badguy.com, and if they try, we will spring a

“booby trap” to find the guilty party.
5. All other services from everywhere else are denied.

What TCP_wrappers Cannot Do

As we have seen, TCP_wrappers provide a simple and effective means to
control access to our machines. However, we must still remember “There is no
secure in computer security, only more secure or less secure.” As with all
security measures, TCP_wrappers have their limitations.

First and foremost, wrappers cannot control access for those services started at
boot-time and run until system shutdown. Services like sendmail and httpd (the
World Wide Web server) fit this category. These services are always listening to
their own ports and require their own access controls. Discussions of the
security of sendmail and the World Wide Web fill entire volumes and are
certainly outside the scope of this article.

TCP_wrappers may also be vulnerable to “host name spoofing”. Services like rsh

and rlogin depend on the host name being correct. If you use a DNS server on
which you cannot look up host names, it is possible for an attacker to “spoof”
the name lookup by hiding his computer's name behind one your machine
“trusts”. You can thwart these attacks by putting an entry for the Internet
address and host name in your local /etc/hosts file, so that you do not depend
on outside DNS lookups (an added benefit is that host name lookups are a lot
faster). Be aware that you are now responsible for keeping the /etc/hosts file up

to date. If a computer in the /etc/hosts file changes its Internet address, access
will be denied until you change its entry. Fortunately, this is a rare event, and I
regularly put entries in my /etc/hosts file for computers I contact often and for
every host allowed access to my machine.

TCP_wrappers also do some additional homework to avoid name spoofing
attacks. When compiled with the default option PARANOID (see the discussion
of wild cards above), the wrappers not only check an Internet address by
looking up its name but also by looking up its address. If the two don't match,
access is automatically denied.

Another vulnerability can come from “source routing”, a situation where a
computer from some “outside” address claims to be a trusted computer on the
“inside”. TCP_ wrappers can be compiled with KILL_IP_OPTIONS to disable
source routing. Luckily, we Linux users generally do not have to worry about
this sort of attack, since IP source routing is turned off by default in the kernel
itself.

Finally, even though you can use wrappers to control access to certain services,
the best way to avoid exploitation of a service is to completely shut it off from
the beginning. If you have no use for rsh or rlogin, edit your /etc/inetd.conf file
and put a hash mark, #, in front of the lines for the shell and login services. This
advice goes for any other service you don't use. Security holes cannot be
exploited on services that are never started. “When in doubt, comment it out” is
my motto.

Conclusion

TCP_wrappers are cheap and effective tools for controlling access to your Linux
computer. Even without employing the access control features of wrappers, the
ability to trace each and every connection to your machine through your
system logs can be extremely valuable. TCP_wrappers can control access with a
broad brush or a single pen stroke. Either way, I hope this article has raised
your awareness of the ease with which you can control the “network face” of
your machine.

Where to Get TCP_Wrappers

Lee Brotzman is the Vice President of Advanced Data Solutions, a consulting
firm in State College, Pennsylvania. He currently works as an instructor in
Internet security, and has presented courses in Unix system security at many
U.S. Government facilities. He also serves as a consultant in the design and
development of networked information systems and electronic publishing. He
resides in State College with his wife/business partner of fifteen years, their
three children, one dog, two cats and a goldfish that thrives on dog biscuits

https://secure2.linuxjournal.com/ljarchive/LJ/040/2180s1.html

(which makes the cats extremely nervous). He can be reached via e-mail at
leb@vicon.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Programming with the XForms Library, Part 2: Writing an

Application

Thor Sigvaldason

Issue #40, August 1997

We learn to write an application with XForms by simulating a game with 2
players and 2 actions.

Last month we began this series on XForms by explaining how to install the
forms library and include file. We also took a stab at programming with XForms
by writing a couple of simple programs. In this month's article, we're going to
write a fully fledged application. We'll start with an explanation of the project,
and then see how to implement it with XForms.

The Project: A Game Theory Simulator

Our task is to implement a game theory simulator. If you don't happen to have
a doctorate in mathematics, you might want to have a look at A Primer on
Game Theory which appears on page 52 of this magazine. We're attacking a
non-trivial programming task in order to get a handle on how to do “real-world”
programming with XForms. It's not important that you understand every
nuance of game theory, since our main goal is to figure out XForms.

In a formal game, there are two main entities we have to consider: players and
payoffs. So our simulator should allow us to set relevant values for these
elements. Players, for example, are defined by actions and strategies. Similarly,
payoffs are just a set of values that players receive when they play the game. As
a great simplifier, we'll assume there are only two types of players and only two
possible actions. This reduces the dimensionality of our programming problem.
A good exercise for readers would be to try and relax the two strategy
limitation, but make sure you understand the initial program fairly well before
trying to modify it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Since we're creating a graphical application, we'll want a point-and-click
interface for setting up our players. The method adopted is to think of players
as having a finite number of states. In every state, there is an action to be
taken. Since we've limited ourselves to just two possible actions, let's call these
A and B. Our simulator will be used for repeated games, so we want to be able
to design players who can change their actions. That is, move to another state
which tells them to play a different action. There are only two types of players,
Column Players and Row Players, and two actions, so the choice of which action
to play can be affected only by what the other player did.

Let's say you want to design a player who always plays action A. That's simple;
just set the action in each state to A. A more complicated example would be to
design a player who plays A if the other player chose A last period, but B if the
other player chose B. This is easier to see with a diagram:

Figure 1. Diagram of Player States

Here we see that the transitions from state to state can be made contingent on
the behavior of other players. So to implement an interface for designing
players, we have to be able to specify the action in each state and the
transitions to perform, i.e., which state to jump to, given the behavior of the
other player. We cannot make one player's choices contingent on what the
other player does in the current period. This would violate one of the tenets of
standard game theory: simultaneous choice of action. Here we show only two
states, but we'll allow for more complicated player strategies in the actual
program.

We'll also want several players of each type to exist and to be randomly
matched against players of the other type. This sounds more difficult than it is,
since we still have to design only two types of players. The population of Row
Players, for example, should differ only in what state they are currently in, not
in the overall design of their strategy.

Like player design, we'll want an easy way for the user to set and edit payoffs.
This is a little simpler, since we just need a graphical representation of the
payoff table and a method for letting the user change these values. We'll want
both of these features to appear in their own windows so we can pop them up
when we need them.

Once the user has specified player strategies and payoffs, we'll also need a way
to actually run the simulation. This routine should match the players, allocate
their payoffs, and handle the transitions from state to state. It should also let us
set how long the game should run, and give us some nice visual feedback on
the progress of play.

All of this input, interaction and editing may seem very complicated. It would
probably require a fairly cumbersome set of menus or a command language, if
we were going to program this project on a simple terminal window. But with
XForms, we can easily create windows, input fields and other graphical
elements required to implement our game theory simulator. If this is all a little
hazy, it may be a good idea to play with the running program a little (see
below), and then come back to this section.

The xgtsim Program

Let's just plunge right in. We'll get an example up and running right away, and
then use the rest of this article to explain how it works. The program is called
xgtsim and the C source code can be found in Listing 1.1 Although you're
welcome to type it in, it's also available on the web site for this series (see
http://a42.com/~thor/xforms, Listing 1). It should compile with the command:

gcc -lX11 -lforms -lm xgtsim.c -o xgtsim

From within the X Window System, you should be able to run the program by
typing ./xgtsim in an xterm window. If you have problems, you may want to go
back and review last month's article on installing XForms. With all possible
windows open, the running program should look something like Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2009l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2009f2.large.jpg

Figure 2. xgtsim with Windows Open

If you want to play around with the program before continuing with the rest of
this article, one useful exercise would be to set up a prisoner's dilemma. Just
use the payoff editor to set values the same as they appear in the primer, and
then try some different player strategies. In particular, try and figure out what
happens when two Tit-for-Tat strategies come up against each other. Does it
matter what initial strategies they play?

The Flow of the Program

Last month, we saw that the basic steps to designing an XForms program are as
follows:

1. Include forms.h to access the XForms routines
2. Call fl_initialize() as soon as possible
3. Set up your graphical interface by creating forms
4. Assign actions to relevant objects by setting callbacks
5. Show one or more forms
6. Turn control over to fl_do_forms()

https://secure2.linuxjournal.com/ljarchive/LJ/040/2009f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2009f2.large.jpg

We use this approach in xgtsim. Like all C programs, execution begins in the
main() routine, which is at the very end of the source code. First we call
fl_initialize() to set up XForms, and allow it to parse command line arguments.
Next, we call set_defaults() which seeds the random number generator, and
sets some default values for our payoffs and player design variables: payoffs[][]

[], state_actions[][] and state_transitions[][][].

A call to create_forms() is then made, which sets up all of our windows, graphic
elements and callbacks. We'll go into more detail shortly, but let's look at how
this works for the simplest case: quitting the program. Within the
create_forms() code, we use main_window (a variable of type FL_FORM) to
create a window which will be shown when the program starts up. This window
has four buttons on it, called Players, Payoffs, Run and Quit. Notice that the
Quit button is set to call the function quit_xgtsim() with the command:

fl_set_object_callback(obj, quit_xgtsim, 1);

This means whenever the mouse is clicked on the button labeled Quit, the quit
routine will be called. This function, in turn, simply calls fl_finish() and then
exits.

To return to the flow of the main() function, after setting up all of our windows,
buttons and so on with create_forms(), we then make our main_window appear
with a call to fl_show_form(). Then we turn control over to the user by calling
fl_do_forms().

It's crucial to understand that setting up our forms in create_forms() does more
than just decide how graphics should be laid out on the screen. By setting
callbacks to link button pushes and data inputs with specific actions, we've
actually set up the whole flow of the program. When the user pushes the
Payoffs button, it is XForms (via fl_do_forms()) which calls the relevant routine
to make the Payoffs window appear, and to handle subsequent interaction with
that window. In fact, if we've set all our callbacks correctly, execution never
returns to main(). The fl_do_forms() routine returns only if the user activates an
object which does not have a callback associated with it.

Some Details

Since create_forms() is so important, lets look at it in more detail. We use and
re-use a generic pointer called *obj, which is of type FL_OBJECT, to create many
of our graphical elements. This can be a little confusing, but we'll clarify things
as we go.

The first form created in create_forms() is main_window. This is a global pointer
variable which we declare early in the source code. We tell XForms it is a

window which should be 290 pixels wide and 50 pixels high with the
assignment:

main_window = fl_bgn_form(FL_NO_BOX, 290, 50);

In the following nine lines of code, we create four buttons which will be used to
pop up windows for user interaction and to quit the program. Each time we
need a new graphical element, we just use obj, which saves memory and keeps
things simple. Just remember that whenever we reassign obj, all subsequent
functions passing obj as a value will affect the most recent assignment. The
Players, Payoffs and Run buttons are all linked by a callback to a routine called
display_forms(), but they are set to call that routine with the values 1, 2 and 3
respectively. The display_forms() routine, in turn, uses these values to decide
which window to display. After creating the Quit button, we tell XForms we're
done adding elements to this form by calling fl_end_form().

We then go on to create the player_window, payoff_window and run_window.
These all follow the same general pattern; declare the dimensions of the
window with fl_bgn_form(), add as many objects as we want (assigning
callbacks as we go), and then finish with fl_end_form(). We'll look at the
run_window in detail, since it's the simplest. Once you have it figured out, you'll
probably want to look over the other two on your own.

Since we want visual feedback from the game, we create two charts in the
run_window. We make these into line charts by specifying FL_LINE_CHART, and
we set the dimensions by including 4 integer values. The first two values
represent where the upper left corner of our chart should appear, with 0,0
being the very top left corner of the form the object is being created on. The
next values describe the width and height of the object. Finally, we supply a
string to give the chart a label:

column_chart = fl_add_chart(FL_LINE_CHART, 10, 30,
 190, 90, "Column Players");

You may be wondering why we assign this function call to a variable called
column_chart instead of using our generic obj variable. This is done because
column_chart is declared as a global variable, which is accessible to all the
routines in xgtsim. In particular, when the game is actually being run, the
play_the_game() routine uses this global variable to add values to the chart we
just created—look for the function fl_add_chart_value().

With the label "Column Players" assigned to our chart, the default behavior is
for it to appear below the chart. We move it to the top left corner with the call
to fl_set_object_lalign(). Then we limit the number of items which can be
displayed with fl_set_chart_maxnumb(). We then create an almost identical
chart to display information about Row Players.

In addition to chart feedback, we create two browsers to display numerical
data. This is accomplished with calls to fl_add_browser(). Browsers are very
useful objects in XForms, and they can be used in many different ways. Our
implementation here is very simple, but you can learn more about them in the
XForms documentation.

To allow the user to set the number of iterations the game should run, we
create a counter, and set lots of options. First we align the label to appear on
the left, then set the precision to 0. This just means we want our counter to
hold integer data, since you can't really perform half an iteration. A standard
counter appears on the screen with two sets of arrows. Whenever they are
pushed, they change the value of the numerical data the counter is holding. We
set bounds on this data with a call to fl_set_counter_bounds(), and then make
one set of buttons change the value by 1 and the other set change the value by
100 by setting the counter step rates. We also set the starting value in the
counter to a default value (stored in numb_iterations), and then record a
callback. Whenever the counter object is changed, the routine set_iterations() is
called which sets the variable numb_iterations.

The run window also contains two buttons, one to start the game running and
one to stop it. Notice that we create these two buttons in exactly the same
place on the form, so that they are on top of each other. Before finishing,
though, we hide the stop_button to ensure the go_button is visible. When the
go_button is pushed, it calls play_the_game(), which hides the go_button and
makes the stop_button appear. The ability to call fl_hide_object() and
fl_show_object() makes form design in XForms very flexible, since you can
design windows where objects appear and disappear according to any number
of conditions. When an object is hidden, it is impossible for the user to activate
it.

Once fl_end_form() is called, we are nearly done with this window. Immediately
afterwards though, we call:

fl_set_form_atclose(run_window, close_forms, 0);

This tells XForms what routine to run when the window manager sends the
close window signal. On most window managers, this signal is sent when the
user clicks on a close icon in the title bar of the window in question. This is like
a callback, but the format is slightly different. In a normal callback, the
declaration is of the form:

fl_set_object_callback(the_object, the_function,
 an_argument);

The function pointed to by the_function must accept two arguments, an
FL_OBJECT pointer and a long, as in:

the_function(FL_OBJECT *obj, long an_argument);

This function must return void. When the window close signal is sent, however,
it applies to an entire window/form, not a particular object on that form. So the
first argument to fl_set_form_atclose() must be a pointer of type FL_FORM, as
in:

close_forms(FL_FORM *form, void *an_argument);

This function must return an integer, and in particular, it should return FL_OK if
you want the window to actually close, and FL_IGNORE if you want the window
to remain visible.

Having looked at main() and create_forms(), the rest of the source code is fairly
easy to follow. The most complicated part is how the player_window uses the
row_or_column variable to edit both types of players on a single form. The
general idea is as follows. The global variables state_actions[][] and
state_transitions[][][] hold all the data on the current state of both types of
players, i.e., Column Players and Row Players. On the Player window, there are
two buttons allowing the user to choose which type of player they want to edit.
Whenever these are pushed, the Player window must be updated to reflect the
state of these variables. This is done by the set_row_or_column() routine, which
reads values from state_actions[][] and state_transitions[][][] into the relevant
objects on the Player window, which are action_choices[] and
transition_inputs[][].

With the window updated to reflect the current state of the relevant set of
players, the user can now edit these values. This is accomplished via the
set_player_values() function, which is called whenever any of these on-screen
objects are changed. We do not bother trying to figure out which object is
changed, but simply read all values on the Player window into state_actions[][]

and state_transitions[][][].

The only remaining subtleties in the program are the use of the abort_flag

variable and the call to fl_check_forms() in the iteration loop of play_the_game().
When the Go button is activated in the Run window, play_the_game() is called.
One of the first things done in that routine is to set abort_flag to zero. Players
are matched, payoffs made and the charts on the Run window are updated. At
the bottom of the iteration loop, we check to see if abort_flag has been
changed from 0 to 1, and if it has, we stop the run. You may be confused as to
how this flag's value could have possibly changed within this algorithm.

The key lies in the call to fl_check_forms(). This is a non-blocking routine that
works just like fl_do_forms(), except that it exits immediately if no objects were
activated. This exacts a small performance penalty, since the program is
effectively monitoring all its objects while the game is running, but it is well

worth it. Since we set a callback to the Stop button to change abort_flag to one
(via stop_the_game()), clicking on the Stop button will cause the current game to
be aborted.

This has the added benefit of allowing us to modify all our data while the
simulation is running. For example, we can alter payoff values and immediately
see how this changes the unfolding game via the visual feedback in the Run
window. Similarly, we can change player strategies on the fly, and watch how
this affects their performance. This probing and runtime editing of parameters
is often very difficult to achieve with standard C running on a console, but with
a few global variables, a little sensible design and a call to fl_check_forms(),
XForms makes it almost trivial.

Things to Try

If you've managed to pour over xgtsim and get a good feel for what's going on,
you may want to try altering the source code to test your understanding. One
thing to attempt would be adding an extra button to the Main window that
randomizes all the current variables. That is, suppose the user has set payoffs
and strategies, but wants to scramble these values. You'll not only have to add
the button and set up the callback, but you'll have to update any currently
displayed windows to reflect these changes.

The charts in the Run window currently provide only average feedback on the
two types of players. Try adding more charts or other elements to display
information on the best and worst players in each category.

If you're feeling really ambitious, then try altering xgtsim to allow for more
actions and more complicated strategies. This can get very complicated, since
elements like the payoff matrix will have to grow and shrink depending on how
many actions are currently possible. This can be accomplished by dynamically
creating new objects and forms, something we haven't covered so far.

Coming Next Month

In playing with xgtsim, you may find a set of strategies and payoffs that
generate interesting results. Currently there's no way to save this state of the
game, because we have no file-based input and output. We'll be adding that
next month, by using XForms pre-built file requester routine. It's just part of a
whole set of “goodies” that XForms includes, and we'll be looking at most of
them.

Resources

We'll also spiff up our application with some pixmaps, learn how to set gravity
parameters to control window resizing, and look at a few other interesting
features of XForms.

Thor Sigvaldason is the author of the statistics program xldlas which uses the
XForms library (see LJ #34, February, 1997). He is trying to finish a PhD in
economics, and can be reached at thor@netcom.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2009s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Means Business: Security and Authentication with

Digital Signatures

Robb Shecter

Issue #40, August 1997

How one university uses PGP and digital signatures to make its network secure.

PGP and public-key cryptography are used all the time for encrypting e-mail
and other kinds of messages. They can also be used in other interesting ways.
This article describes two other uses for PGP and digital signatures that can
help make networks more secure. The University of Maryland University
College European Division (quite a mouthful) has 65 Linux-based computer labs
in 10 countries. A Linux box in each lab serves files via NFS to Windows/Linux
dual-boot clients. The labs are spread out over a huge geographical area, and
many are hard to reach. We depend on Linux's reliability to make the system
work. At the “education centers”, there is usually no technical support. If a
network is down, someone from Computer Field Support must go to the center
on an overnight trip to fix it.

To keep things as maintenance-free as possible, we have to develop some
secure and reliable systems for managing the networks and the users. The two
systems talked about here both use “clear-signed digital signatures” to
accomplish their goals. One is a system to securely transmit software upgrades;
this has been implemented in Perl and is in use today. The second is a system
for remotely authenticating users without the need to access a user database.
This one is in the design/specification stage.

There are pointers to information about getting started with cryptography at
the end of this article.

Securely Transmitting Software Upgrades

We realized we needed a security system when it came time to upgrade the
software on our lab servers. We had to install new versions of the client

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

programs, make modifications to the server config files and other changes. We
knew that, in many cases, the upgrades must be able to be made by people
with little computer knowledge. The fact that server system files might have to
be modified in a particular upgrade meant that superuser privileges would
have to be given out. The three situations we wished to prevent were:

1. Simple media unreliability—the software was going to be delivered via a
network connection, on zip drive disks or on conventional floppies. The
system would have to protect itself against flaws in the media, such as a
floppy disk with bad sectors. The system should refuse to begin the
installation if any part of the package is bad.

2. “Man in the middle” attack—in general, an attack in which someone alters
the data after it's been sent, but before it's been received. Once the
floppies arrive at the education center, they're left lying around on the
user's desk for a while. A curious (or devious) student can pick them up
and add some special configuration files to be installed. Since superuser
access is given to the upgrade program, someone could modify the
contents of the packages and gain root access.

3. Unauthorized upgrades—our goal of making the upgrades as easy as
possible works for approved and unapproved users. An attacker who gets
access to one of our upgrade floppies could figure out the file formats and
create new upgrades that would change any system files.

These three problems can be summed up as a must to verify integrity and
authenticity. We must make sure that the data has not been altered, deleted or
added to in any way. We must also make sure that the data comes from the
approved source—in this case from our Computer Field Support group.
Integrity and authenticity are exactly the functions digital signatures provide.
The following protocol solves our problem:

1. Computer Field Support (CFS) generates a public and private key pair.
2. A package file listing is generated.
3. An MD5 checksum is generated for each file and listed in a second

column. See Listing 1.

1. This two-column listing is digitally clear-signed with CFS's secret key. This
compromises the certificate delivered with the software package. See
Listing 2.

1. At installation time, the digital signature is checked using CFS's public key,
which is stored on the server.

2. An MD5 checksum is generated for each file in the package and checked
against the corresponding string in the certificate.

3. The installation program in the package is executed.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2304l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2304l2.html

Using this system, a file can't be modified, because the MD5 checksums
wouldn't match in step 6. The checksums in the certificate can't be altered,
because the certificate's digital signature would fail in step 5. PGP and md5sum
are called from shell or Perl scripts to do all the work. The script that creates
the certificate is very simple and doesn't require the user to know how to use
PGP. All he needs to know is the correct pass phrase to enter:

#!/bin/sh
rm listing.asc 2> /dev/null
md5sum * | pgp -staf > listing.asc

The user in the field runs another program, which also calls PGP and md5sum.
The certificates are more secure when clear-signed than when encrypted,
because at this stage we don't rely on any “secrets” being stored on the remote
servers. Only the CFS public key is sent into the field. If anyone breaks into one
of our computers, the information in the public key is harmless. When we
encrypt the certificates, we need to make a second public/private key set for
the servers themselves. The private key would be stored on the server and
used to decrypt the messages, which would be something “interesting” for
crackers to get by. Decrypting the messages also means that a pass phrase
must be given to PGP. Either the user would have to enter it, or it would have to
be a hard-coded parameter to a program. Since our current system needs to
verify only a clear-signed message by using a public key, PGP doesn't need a
pass phrase. This makes the installation process easier and safer.

CERT's method for releasing software patches uses a similar system. They
digitally sign e-mail messages and README files containing the checksums of
files to be downloaded. People who take the time to verify the checksums can
easily find out whether the files have been modified.

Weaknesses

This system has a couple of weaknesses. For one thing, it offers only file-level
protection. It checks all the logical possibilities of modified files, deleted files
and extra files. What about someone modifying the disk in some strange way
that fools the upper level routines? Digitally signing a representation of the raw
disk data is more secure.

This system is also vulnerable if the public key on the server could be modified
or replaced with a different one. The same vulnerability exists for the upgrade
software on the server. In practice, getting root access in order to replace the
public key and creating unauthorized upgrades is a roundabout way to launch
an attack. If the attacker already had root access on a particular computer,
there wouldn't be any reason to use the upgrade system to get privileges or
modify the server.

Authenticating Users without a Database

With the labs gradually coming on-line, we're dealing with the problem of
authenticating student access. Most schools can just put a login program on
their client PCs which checks the user's password against a central database via
a high-speed campus LAN. This won't work for us for many reasons. Many of
our labs will not be on-line in the near future. Even when on-line, the network
support is unreliable and often slow. Another problem is that we have lots of
weekend seminars students sign up for at the last minute. The students sign up
for classes in small “education centers” that send us floppy disks with
registration information via snail-mail long after the fact. Even if every lab were
on-line, the logistics of collecting and distributing all of the information
overnight would be extremely difficult. Luckily, public key cryptography and
clear-signed digital signatures offer a solution:

1. A public and private key pair are generated for use by Field
Representatives (FRs).

2. The FR public key is stored on the computer lab servers.
3. At registration time, a student entitled to computer lab access brings a

floppy disk to the FR.
4. The FR clear-signs a certificate with the student's name, ID number, dates

of validity and, optionally, information about which privileges are granted.
5. At least five characters are removed from the digital signature block and

given to the student as his “password”. In Listing 3, the last five characters
of the second encrypted line were used as the password.

1. The first time a student uses any particular computer lab, he inserts the
disk into a client PC and enters his student ID number and password. The
password and certificate on the disk are recombined and sent to the
server where it is checked using the FR's public key. If the signature is
both valid and unexpired (based on the dates in the certificate), access is
granted.

2. One final step makes the system more convenient for students when
returning to a lab. The server maintains a simple database, keyed on the
student ID number with the student's password encrypted with a
standard one-way encryption routine like crypt(1). The next time a student
visits that particular lab, he doesn't need to bring the floppy disk; he can
just enter his password and be validated.

3. This database is automatically managed in the same way as a DNS cache.
The date of expiration from the user's certificate becomes a “time to live”
field in their database record. A cron job can be set up to periodically
delete all expired entries.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2304l3.html

This scheme has a lot of advantages. Reliable communication between the field
staff, the main office and the labs is not required. Each of the three can be in
completely separate, isolated locations. (And this is often the case.)

As in the first system, no real “secrets” are stored on the lab servers. If
someone gets access to a lab server, there's no information that can help him:
the public key can be read by anyone. The encrypted passwords are stored on
the server; however, since they're random strings and not picked by the users,
they aren't susceptible to the typical dictionary attack. Apart from dictionary
attacks, standard Unix passwords are usually a secure system.

Various user access levels and periods of validity can be assigned to students
by adding them to the certificates. The certificate can contain more information
than just the student's name and ID number. Any kind of information that's
worth keeping track of can be put into it.

Students have instant access to the computer lab once they've received their
certificate. There is no delay waiting for a database to be propagated.

Since the certificates are in plain text, students can see at a glance if the
certificates are correct, if they've expired yet, etc. This should make the system
user-friendlier, and also limit the amount of assistance needed for help desk
calls. There would never be any question about whether a certificate was still
valid, issued for the correct person or contained the correct information.

Weaknesses

This scheme reduces the security requirements in the labs, but increases the
precautions that need to be taken in the Field Staff's offices. Their PCs will have
the secret keys on them, and plans should be made for when a computer is
“compromised”. A possible fix is to give each education center a separate key
set and put all possible public keys on the servers. If a system/key/passphrase
is stolen, that particular key set is revoked and not used any more.

PGP and MD5 Resources

Robb Shecter is a longtime Unix user and has been a Linux fan since v. 0.98.
He's interested in object-oriented design, Java, IP routing and bass guitar. He's
currently a network and Unix specialist at the University of Maryland European
Division, and can be reached at shecter@acm.org.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/040/2304s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Interview with Sameer Parekh

James T. Dennis

Issue #40, August 1997

Interview with Sameer Parekh of Stronghold.

Jim Dennis, “The Answer Guy” columnist for Linux Gazette, recently interviewed
Sameer Parekh for Linux Journal. Sameer Parekh is the founder of C2Net
Software Inc., http://www.c2.net/, the company that imports the Stronghold
web server. Mr. Parekh has been active on the Internet since 1990, especially in
areas related to privacy, electronic civil liberties, security and cryptography.
Stronghold has added fully licensed commercial SSL support and other features
to the popular Apache web server. Excerpts of Jim's interview are printed here;
the full interview will be in the August 1 issue of Linux Gazette, http://
www.ssc.com/lg/.

Jim: What can you tell me about C2Net as an organization? I know it used to be
Community Connexions.

Sameer: Yes, we started out as an Internet provider and a privacy provider—
protecting people's privacy on the Net. People could get anonymous accounts
and set up anonymous web pages. We were strong supporters of the re-mailer
network; we set up the means by which people can browse the net
anonymously through our proxy. That business was going reasonably well. I
was running it pretty much as a hobby in my spare time, while still a student at
Berkeley. Then, I left school to start contracting at SGI down in the South Bay
(the southern end of the San Francisco Bay area—near “silicon valley”.

At the end of last year we came out with Stronghold, though it wasn't called
that at first. It was called “Apache-SSL U.S.” and started going really well. It
became clear that we'd do a lot better selling cryptography products rather
than privacy services. So, we moved our focus away from privacy services and
changed our name to c2.net to reflect that change in focus and to concentrate
primarily on deploying strong cryptography worldwide. As of a few months
back, we officially had the name changed to C2Net Software Inc.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Jim: And you moved your customers over to Dave Sharnoff's idiom.com?

Sameer: We moved our dial-up customers over to idiom some time ago—
around April, 1996. We were still supporting the privacy services until late last
year, when we moved all our web hosting and anonymous account holders to
Cyberpass, a company in San Diego. Cyberpass is run by a cypherpunk (a
mailing list for the discussiong of the politics, technologies and social
ramifications of cryptography and privacy issues) who is very active in privacy
and in the re-mailer network.

Jim: You just mentioned the “cypherpunks”—you and I met at one of their
meetings on the Stanford University campus in Palo Alto. Do you find most of
your employees from this group?

Sameer: I find most of my employees from that group. The others I find from
people I know from school, from other personal contacts and from existing
employee referrals. Of the eleven employees I have, I met about half through
cypherpunks.

I think a lot of my stand on privacy is related to my involvement with the
cypherpunks and to my involvement in the controversy surrounding the clipper
chip when it was first proposed.

We're the only company willing to deal with the fact that what the US
government is trying to do with their export restrictions goes beyond just
impeding or restricting export—it is creating a chilling effect so that companies
inside the US would cripple their cryptography even for their domestic
products. All of our development happens overseas so that we can do
cryptography worldwide, and so that the international versions of our products
will not have to be crippled to 40-bit keys that can be broken in three and a half
hours.

Jim: So your approach is similar to the one John Gilmore and Hugh Daniels are
using with the Free S/WAN project—keeping the developers at the other end,
while you're providing the quality assurance on this side.

Sameer: Well, actually, we're providing mostly the marketing and the sales. We
do a little bit of QA, but that's too close to the export issue. We also do the
documentation—that's all written in the U.S. Also, all the protocols and the
standardization efforts take place in the U.S. Stronghold conforms to protocols
developed and published by Netscape, the W3 consortium and the IETF—
among others.

Jim: Now, there's something I'm curious about. You've combined Apache and
SSLeay, Eric A. Young's SSL (secure sockets layer) implementation, and
integrated them into Stronghold. Then, you got a license from RSA so that you
could include their public key libraries. How did you approach the Apache
organization with the idea for a commercial version of their free package?

Sameer: Well, Apache is free under the Berkeley-style license, as opposed to
the GPL, which means that I didn't have to have any connection to the Apache
group. Apache's license allows you, so long as you insert the appropriate
copyright notices, to start selling an Apache-based product without other
delays.

But that would be kind of rude, I think. I'd been involved in the group before
having any intention of changing the focus of my business. I saw a need for an
SSL version of Apache that could be available within the U.S., so I started
working on it and found SSLeay and Ben Laurie's Apache-SSL patches, which
he'd done in the UK. I integrated these for limited distribution within the U.S.

I already knew many of the Bay Area members socially. I became a contributor
to the Apache group—although not as big as the people who do large chunks of
the code—I do testing and help with the documentation. A full-time tech writer
employed at C2Net does documentation which she contributes back to the
Apache group.

Our product is doing well, so our connection to the Apache group has been
mutually beneficial. Any bug reports we get from our customers go back to
them; any bugs we find, we fix and donate back. A large number of the features
we've added, we've also donated back. Naturally, we haven't donated all of our
added features, since we need to maintain some proprietary value so that we
can make some money, as well.

Jim: What do you think about the GPL versus Berkeley issue? I know this is an
ongoing bone of contention between the FreeBSD and Linux camps.

Sameer: I'm generally in favor of Berkeley over GPL because I think free
software is best done in a variety of different contexts. In particular, with the
crypto environment, it's impossible to do completely free software inside the
U.S. if it involves any public key techniques, because of the patents. RSA holds a
suite of patents which cover almost all known forms of public key encryption—
patents are quite different from copyrights in that a re-implementation of the
same algorithm is still covered.

I think the fewer the restrictions we place on our software, the more people will
use it.

Jim: How many international programmers do you have and where are they
located?

Sameer: We have two, and we don't say where they are. We don't want the U.S.
government to know which country they're in, or they might pressure those
countries to add export restrictions to their laws.

The NSA (National Security Agency) has appointed a person, David Aaron,
whose sole job is to convince other countries to adopt restrictions similar to
ours—so that our strategy won't continue to work. Obviously, if all other
countries had similar export restrictions, doing development in any given one
would allow sales only in that locale. That would be pointless in a global
economy. We want to ensure that the country where we are doing our
development will not be targeted.

Jim: Have you or any other company had any official contact with the NSA?

Sameer: I haven't, but I've heard a lot of rumors from companies who've had
visits from them and were told, “What you're doing is wrong; you should stop it
or it will do bad things to the rest of your business.” NSA can't do that to me
because I have no other business. We do cryptography, and we're at odds with
export restrictions on intellectual property.

Jim: Would you see that as your edge against Microsoft, Netscape and Sun—
that they would have other aspects of their business that might get severely
hampered by the fight against cryptography export restrictions?

Sameer: Well, it's not worth it to them. It doesn't make good business sense for
them. At the same time, it is a business necessity for us.

Any company who doesn't want to fight this battle can let us have that chore.
They (and their offshore distribution agents) can license our software, and they
won't have to do any development. They won't have to put their business at
risk over questions of cryptography technologies.

Jim: How many platforms have you ported Stronghold to?

Sameer: Stronghold supports almost 20 different forms of Unix, including
Linux. It supports both the ELF and the a.out libraries. It works with versions 1.2
and 2.0, although we recommend using the latest stable kernel.

Jim: Which implementation do you think is your biggest volume seller? They're
all priced the same, right?

Sameer: Yes, they're all priced the same. Linux is our number one seller—next
to it, we have Solaris and Irix. I haven't actually done the numbers because we
don't sell on a “per-platform basis”. We sell a Stronghold license, and the buyer
can use it on whatever platform he wishes.

Jim: Now you have separate numbers for evaluation copies acquired and for
copies licensed. About how many evaluation copies are being downloaded
every month?

Sameer: On the order of 20 to 30 a day, which would come to about a couple
hundred per week, or about 1,000 per month.

Netcraft shows that we have an installed base of about 20,000 on the public
Internet, but that includes the virtual hosts, so it's not 20,000 actual hosts—it's
the number of domains served by a Stronghold server. It's sort of a misleading
number because they're checking only the non-SSL sites, and a lot of people
run Apache on their unencrypted server and Stronghold on the encrypted
server. Many run Stronghold on both, as well.

Netcraft did a different survey of SSL servers where we came in second. That is,
for servers in general, we came out second among commercial Unix servers
and fourth in commercial overall.

Jim: The Netcraft surveys you've been referring to, is there a link to them
somewhere on your web pages?

Sameer: Well, it's at www.netcraft.com. I think the surveys are on our site as
well. I'm proud of our Netcraft ratings, so we mention them prominently.

Jim: What other products are you working on?

Sameer: We have our “Safe Passage” web proxy. This does full-strength SSL for
web browsers worldwide. It's currently in beta and is available at our U.K. site. It
provides a locally-hosted proxy to provide full-strength cryptographic
capabilities to the international versions of Netscape and Microsoft browsers.
As you know, these are limited to 40-bit crypto when sold outside the U.S.—
denying them access to sites requiring the stronger keys domestically available.

Basically, “Safe Passage” allows a user's browser to talk 40 bit to the proxy on
his system which, in turn, talks to hosts out on the Web. Currently, it runs only
under Windows.

Jim: What do you think of the Free S/WAN project?

S/WAN is a “secure wide-area networking” protocol from RSA—Free S/WAN is a
work in progress which is being imported by another group of cypherpunks
and John Gilmore of the EFF.

Sameer: I think it's a good thing. We need to provide IP level encryption in
addition to the applications-specific security provided by programs like
Stronghold or PGP. With regard to our product line, we haven't evaluated how
that might fit into our strategy, so I don't have any comment from a business
perspective.

However, from a more personal point of view, I think producing a freely
available implementation of IP level encryption is a great thing. We want this
deployed so that all of the Internet traffic is encrypted and, thus, authenticated.

Jim: Getting back to Stronghold as a “commercially supported Apache Server”
and leaving aside its support for SSL and commerce... are there any companies
offering just that—just a commercially packaged Apache?

Sameer: There are companies that offer Apache support services—but there
aren't any selling a supported package—where you'd get a shrink-wrapped box,
with binaries and pre-printed documentation, so these companies just offer the
service. We offer a product—which includes e-mail support, of course.

Cygnus was doing some Apache support as well, but I believe they may have
dropped that. Then there was a company in South Africa, Thawte, which had a
product called Sioux. We ended up buying that one out and integrating its
features with Stronghold's.

Sioux was released a few months after we had produced “Apache SSL U.S.” We
started talking to Thawte—and decided to buy Sioux from them to eliminate
any conflict of interest for some other business we wanted to do with them.
You see, Thawte's primary business is as a CA (certification authority). It was an
amicable arrangement, since Sioux wasn't the kind of software business they
wanted to get into. We are now bundling Thawte certificates in the Stronghold
package for only $50 US more—which is about half the regular price of a
Thawte.

Jim: I've been reading in the Apache's modules lists about phps; what are they?

Sameer: php originally stood for “Personal Home Page”—but it doesn't mean
that any more, so it's just php and doesn't stand for anything.

A php is a specific module that does dynamic content—a phrase I like to use for
things like server side includes, extended ssi, php, e-perl, etc. They are all
providing dynamic content—where the page is parsed by the server and the

data which are sent to the client are based on the scripting inside the original
document.

We like php because it's easy to use, it's very robust and it offers connectivity to
almost every database out there. Well, I shouldn't say that—there are a lot of
databases “out there”. It can connect to Postgres '95, mSQL, Solid, Sybase,
ODBC, etc.

It's a way to embed scripting inside your HTML. For example, you can have
conditional sections that include blocks of HTML based on the results of certain
pieces of code. You can have an HTML page that does a database query,
formats and sends information out of the database. php offers significant
speed advantages over CGI since it's loaded directly into the web server. You
save the load of forking off a Perl process, which you must do when using CGI.

Stronghold 2.0 bundles with the php module—2.0 is in beta now. We've been
using php quite a bit in-house for our database connectivity and our external
web site.

We also support the server side includes—which were in the early CERN server.
Stronghold is based on Apache, which also includes the “extended SSI”. XSSI
adds things like conditionals.

Jim: Do you think tools such as these are better than CGI?

Sameer: Yes, it's a lot easier to build applications—particularly where it's not a
complicated application—where you just want to include a little scripting
directly in your HTML. If you use a CGI script, the script has to output all of the
HTML. It's just as transparent to the browser—but it's a lot faster, and it's a lot
easier for the web administrator to maintain.

Jim: Currently, the whole SSL view of the world, brought to us by the Netscape
Commerce Server, is all about the server authenticating itself to the client—
about web sites saying “You've reached me—and not some imposter and
there's no man-in-the-middle and we can exchange information privately”. This
approach doesn't seem to offer anything other than manually typed
passwords. Maybe we need some sort of client authentication certificates for
SSL.

Sameer: Actually, that's already in there. Stronghold already supports client
authentication. The SSL protocol added that in version 2. Netscape supports
client certificate authentication starting with Navigator version 3, which was
built around the same time as SSL version 3.

Stronghold was the first widely-used commercial server to support SSL client
authentication. Now that we have the support in the browser and our server,
it's only a question of user acceptance and getting sites to start using it.

The SSL client authentication is an excellent technology. We're using it
extensively here at C2Net. Because we have people from all over the world, we
can't have this big private WAN, and we can't set up a VPN6 using something
like Free S/WAN—it isn't ready yet.

Jim: Do you see C2Net coming out with, maybe, an ssltelnet and sslftp to
compete with ssh?

Sameer: Well, we can't talk about all the details of all our product ideas.
Actually, ssltelnet and sslftp already exist—no one's supporting them, and no
one's using them yet.

I think for encrypting secure shell logins and file transfers, ssh is the best
product out there. Although it's a different authentication protocol, unlike the
SSL between my browser and my web server—it is RSA-based, and I can use my
copy of ssh through my Ricochet and log in to my servers.

Jim: What else can you think of that just has to be said?

Sameer: The key thing that we at C2Net are focusing on is the worldwide
deployment of cryptography. I think it's vital that we deploy strong crypto
worldwide in the very near future.

The U.S. government has made it clear that their intent is to make the personal
use of strong cryptography completely illegal. Deployment has to happen
before they do that. If these crypto products aren't ubiquitous before then,
we'll have a much harder time protecting our privacy.

I see cryptography being used for much more interesting things than just
protecting credit cards. While it's prudent to encrypt your credit card number
before sending it over the Net, it's not an interesting application of strong
cryptography.

We want to build an infrastructure so that restrictions on personal use of
privacy technology will have major business implications ... so that privacy itself
cannot be made illegal.

Jim Dennis is the proprietor of Starshine Technical Services (http://
www.starshine.org). His professional experience includes work in technical
support, quality assurance and information services for both large and small
software companies. He has just begun collaborating on the 2nd Edition of a
book on Unix Systems Administration. Jim is an avid science fiction fan. He can
be reached via e-mail at info@mail.starshine.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Berkshire PC Watchdog

David Walker

Issue #40, August 1997

The board can monitor a PC's activity in several ways to determine if it has
locked up.

• Product: PC Watchdog
• Manufacturer: Berkshire Products
• Phone/Fax: 770-271-0088/770-271-0082x
• URL: http://www.berkprod.com/
• Price: $144.95 US $159.95 US with temperature monitor option
• Reviewer: David Walker

Do you have an Internet server that needs to be on-line 24 hours a day, 7 days
a week dependably? A hardware watchdog timer is one way to be sure such a
system is down for a minimal length of time. One such board is the PC
Watchdog System Monitoring Board made by Berkshire Products.

I reviewed the PC Watchdog (rev. C) with the temperature monitoring option,
part number 1090-1. From the manual: “The PC Watchdog board is a short, 8-
bit ISA card that is used to monitor a PC to ensure maximum system
availability.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The board can monitor a PC's activity in several ways to determine if it has
locked up. Dip switches on the board can be set to monitor specific I/O
addresses for activity. If the PC Watchdog board does not detect activity on the
monitored addresses for the specified period of time, it reboots the machine.

The board has a user I/O port that can be used for enhanced watchdog control
and monitoring. This is the same interface used by the Linux kernel PC
watchdog driver and PC watchdog daemon. If an I/O port on the board is not
written to within the specified time, the board reboots the machine.

The board came packed in an anti-static bag in a box with a manual and a 3.5-
inch MS-DOS disk of MS-DOS software, including source code. The manual
covers the details of the hardware thoroughly. However, it did not specifically
describe a Linux installation, and no Linux software is included on the disk.

Platforms

The PC Watchdog comes with software drivers for MS-DOS/MS Windows. Linux
support is available with the kernel and on the Internet. The board works with
Intel architecture motherboards and requires one ISA slot.

Setup and Installation

The board uses three dip switches to configure its operation. I configured the
board in order to ignore I/O activity as the Linux driver writes to the user I/O
port to keep the board from resetting the PC. I set the address of the user I/O
port to 0x0270 and set the delay time to one minute. My switch settings are
shown in Figure 1.

Figure 1. Board Switch Settings

I compiled the Linux 2.0.28 kernel with the PC Watchdog driver enabled as a
module. I also compiled the watchdog daemon from watchdog_2.0-0.tar.gz
(from sunsite.unc.edu in /pub/Linux/system/Admin) and added it to /etc/rc.d/
rc.local. I created /dev/watchdog and /dev/temperature with the major and
minor device numbers specified in the kernel documentation on the watchdog
(linux/Documentation/watchdog.txt).

When all was ready, I shut down my machine, turned off the power and
installed the PC Watchdog board in an ISA slot, following the instructions in the
manual.

A wire on the board connects to the reset connecter on the motherboard. The
wire from the reset switch connects to another connecter on the Watchdog
board, so that the reset switch on the case will still work.

Making It Work

When I turned the power on, my machine booted. After a 3.5-minute delay, the
PC Watchdog beeped then rebooted my machine. After a few reboots I
disconnected the wire from the board to the reset connector until I could figure
out how to make the software work correctly.

I sent e-mail to Berkshire Products (73201.1270@compuserve.com) for any
information they might have on Linux. Simon Machell promptly replied
referring me to Ken Hollis (khollis@bitgate.com) who wrote the kernel driver for
the PC Watchdog board.

While I waited to hear from Ken, I found a bug in the kernel driver. After I fixed
this bug, the example watchdog daemon from linux/Documentation/
watchdog.txt and the daemon from watchdog_2.0-0.tar.gz worked.

Listing 1 is my patch to fix the kernel driver included with Linux-2.0.28. It may
also work with other kernels—your mileage may vary.

Ken directed me to the latest driver he has written: ftp://ftp.bitgate.com/pub/
mirrors/bitgate/pcwd/pcwd-1.01.tar.gz. I got the tar file, looked at the contents,
then patched my kernel source tree with the patch file patch-2.0.15.

Patching linux/drivers/char/pcwd.c and linux/include/linux/pcwd.h wasn't
successful, so I copied pcwd-2.0.27.c to linux/drivers/char/pcwd.c and pcwd.h to
linux/include/linux/pcwd.h. The watchdog driver then compiled successfully.

The new driver does not work with the daemons for the older driver; it comes
with a new daemon. The driver works correctly with the included daemon. The
daemon included with the driver lacks one useful feature: the daemon from
watchdog_2.0-0.tar.gz. It doesn't fork when it writes to /dev/watchdog, so it
won't reboot the machine if the process table gets full.

I modified the daemon to fork before writing to /dev/watchdog, so a full
process table will cause a reboot of the machine. Listing 2 is the patch to
watchdog.c from pcwd-1.01.tar.gz.

I did try compiling the PC Watchdog driver as part of the kernel, but it caused
an error and wasn't initialized properly. It works fine compiled as a module.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2102l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2102l2.html

Setting Up the System rc Files

The module must be loaded, and the watchdog daemon started before the file
systems are fsck-ed. Fsck-ing the file systems can take longer than the delay
built into the Watchdog board. I put the following commands to load the
module and start the daemon in my /etc/rc.d/rc.S file (Slackware initialization
files) before the file systems are checked.

load the watchdog module and
start the watchdog daemon
if [-x /lib/modules/2.0.28/misc/pcwd.o]; then
 echo -loading watchdog module'
 /sbin/insmod 'f /lib/modules/2.0.28/misc/pcwd.o
if [-x /usr/sbin/watchdog]; then
 echo -starting watchdog daemon-
 /usr/sbin/watchdog -t 10 &
fi

At this time, the root file system is mounted read-only so depmod cannot be
run to build the modules.dep file. Therefore, kerneld won't be able to load the
watchdog module when a new kernel is installed.

A generic link to the module directory can't be made at this time either;
therefore, the full path name to the module must be used here. The path to the
module must be updated when a new kernel is installed to insure that an old
module is not loaded.

Testing

I tested the board by killing the watchdog daemon and running a program that
forked until the process table was full. The system did not experience any
failures on its own during testing.

The PC Watchdog can also monitor the temperature of the machine, although
the kernel driver does not support reading the temperature. I wrote a short
program to read and print the temperature reported by the board (see Listing
3). As I heated the board with a hair dryer, my program reported the rising
temperature and the board started beeping an alarm when the temperature
reached 56 degrees Celsius. The board does have an option to hold the PC in a
reset state when the temperature exceeds 60 degrees Celsius by closing a
relay. A daemon could be written to send e-mail or call a pager when the
temperature gets too high or to shut down the PC.

Comparison with Other Products

Industrial Computer Source makes the WDT Watchdog Timer Hardware board,
for which there is also a Linux kernel driver. It's available from Industrial
Computer Source (619-677-0877 in the USA, 01-243-533900 in the UK, and (1)

https://secure2.linuxjournal.com/ljarchive/LJ/040/2102l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2102l3.html

69.18.74.30 France). It appears similar to the PC Watchdog board, though I've
not used it.

A software watchdog driver is also available for the Linux kernel. The software
watchdog cannot reboot the system from some lockups nor does it have a
temperature sensor. The hardware boards should reboot the system after any
lockup.

Conclusion

The PC Watchdog is a well-designed, well-made board. During my three weeks
of testing, it operated dependably. The board never reset the PC unnecessarily,
and it never failed to reset the machine when needed.

Berkshire Products

David Walker is Linux/Unix System Administrator and Programmer living near
Seattle, Washington. When he isn't working he likes to play with Linux, hike or
ride horses in the mountains. He can be reached at dwalker@eskimo.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2102s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

XVScan

Michael Montoure

Issue #40, August 1997

I did a search on DejaNews (http://www.dejanews.com/) while researching this
review, to see if I could find any negative comments people had posted to
Usenet about XVScan. I couldn't find any.

• Manufacturer: tummy.com, ltd.
• Phone: 970-223-8215; Fax: 408-490-2728
• E-Mail/URL: xvscan@tummy.com
• URL: http://www.tummy.com/xvscan/
• Price: $50 US for ftp or e-mail shippingAdditional $15 US for media in the

United States$25 US internationally
• Platforms: Linux, HP-UX, BSD/OS, FreeBSD, SunOS and Solaris
• Reviewer: Michael Montoure

I'm a little biased—I had been happily using John Bradley's xv image
manipulation software long before I ever heard of XVScan. So when I heard that
someone had added the ability to acquire images from an HP ScanJet scanner

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

to xv, I was immediately intrigued. Sean Reifschneider, who wrote the software,
posted the following message to comp.os.linux.hardware in 1995:

When I first got the ScanJet I wrote a hpscanpbm (I
don't think the real one was available then, and
anyway, it only took 4 hours) that I used for a couple of
months until I could get the time to write something
better.

The end result is “XVScan”, a scanning extension to XV.
While the “hpscanpbm” worked okay, this is about a
thousand times better. I mean, I used to do the scan,
load it into xv, and maybe I'd have to tweak, re-load,
etc... Now I can just scan directly into XV.

Now, if you've never used xv, you might not understand my enthusiasm for it; it
is, after all, a simple, straightforward tool. It certainly isn't in the same league as
PhotoShop, but it's good at what it does—reading and writing files in a dozen
different formats, window capturing, color-map editing, cropping and some
fairly interesting image manipulation algorithms. In short, while it may not have
all the fancy bells and whistles, it does have those things I use on a regular
basis when manipulating images.

Installation

XVScan should run with any version of Linux—it's been tested with the 1.2.x
and 2.0.x kernels, but it hasn't been tested with MkLinux yet. (Mac users—if you
try this and get it to work, let tummy.com know—they're interested.) XVScan
requires built-in generic SCSI driver support—no earlier than version 1.1.79.
You don't need Motif, and you can use any version of XFree (X11R5, X11R6).

If you're not running Linux, you can also run XVScan under HP-UX, BSD/OS,
FreeBSD, SunOS and Solaris—although if you're using Solaris and require SG,
the generic pass-through SCSI driver, there is an extra charge.

XVScan was installed by Peter Struijk, one of SSC's Systems Administrators,
before I started using it. A few minutes of looking through the documentation
for XVScan makes installation seem easy, as Peter confirmed.

There's a setup program, used by the INSTALL-xvscan script, that searches your
hardware for a scanner—namely, a SCSI ScanJet scanner, the only type XVScan
can currently use. If one is found, the script creates the /dev/scanjet device file.
Seems straightforward to me. In the Linux version, if XVScan can't find a
scanner attached to the SCSI chain, you can still use the regular xv functions—
just the scanning is disabled. Peter tells me the only tricky business is to
remember that if in the future you change any of your SCSI devices, you must

rerun this setup program; otherwise, XVScan will no longer be able to find the
scanner.

Some users, apparently, even pick up XVScan just to have an easy-to-install,
pre-built copy of xv. This makes sense when you consider that the $50 price tag
includes the $25 xv license fee, it's distributed with full source code and
updates are free for the first year.

Getting Started

When I first started up XVScan, my first thought was, “This looks exactly like
xv”--and it does. Only when you look at the Control menu do you notice the
addition of a Scanner button that, when clicked, brings up the scanning window
in which the scanned image is displayed. Other differences are even less
apparent. Another change from the normal release of xv are the defaults used
when XVScan starts.

By default, XVScan turns on -nolimits, which lets images be larger than your
screen—sometimes much, much larger. I suppose I can see the point of doing
this, but I found it annoying not to have the image appear as a small,
convenient window I could easily move around on my screen.

On the other hand, the other default it changes is that -rwcolor--read/write
color entries—is set “on” at startup. Thus, any color editing I do to the image
happens in real time, without having to manually Apply changes. That's kind of
nice—I like it.

According to the documentation, both of these default options can be disabled.
The documentation is handled nicely. When you click on the scanning window's
Help button, it automatically launches a web browser that points at the on-line
documentation at http://www.tummy.com/xvscan/. Therefore, you never have
to remember their URL, and you don't have to keep a copy of their
documentation on your hard drive. Of course, if you don't have an Internet
connection up all the time, you might not find this so convenient.

The scanning window can be a little daunting to a first-time user, as you're
immediately presented with a display of options, controls and buttons (see
Figure 1). I suppose that's unavoidable for a program this flexible, but at first I
was a little worried about the program's apparent complexity.

Figure 1. XVScan Control Window

https://secure2.linuxjournal.com/ljarchive/LJ/040/2215f1.large.jpg

I shouldn't have worried. The interface is surprisingly easy to decipher and use.
There are generally several ways to do any one task. For example, if you want
to resize the area you're scanning, you can enter numbers to resize it, pick from
a standard selection of paper sizes (conveniently, you can define your own
common document sizes) or click and drag the bars at the edges of the scan
window.

Scanning

Scanning is fast and the quality is high; XVScan can quickly and easily handle
scanning all the way up to 600 dpi. You can precisely select the dpi to use for
scanning and you can adjust the brightness, the contrast, the gamma
correction—most anything you'd like to control.

Unlike a lot of scanners, XVScan doesn't give you a miniature of the image in
the “pre-scan” mode. Instead, when the QuickScan option is selected, XVScan
scans the image and adjusts the resolution so that the resultant image exactly
fits the scanning window. This action might end up displaying the image at a
lower resolution than you have in mind for your final image; it might just as
easily be higher. (For me, it was often higher. I scan images to look good on a
web page, not to be printed, so I don't need to scan at resolutions higher than
72 dpi.)

Once you have your QuickScan image on screen, you can adjust the
appropriate settings as you wish to enhance it and, if necessary, set crop limits.
Once you click on Apply Crop, the cropped image is displayed filling the
scanning window. Now, click on Scan for your next pass, and XVScan scans only
the area inside the crop limits—very convenient.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2215f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/040/2215f1.large.jpg

That's great, I can hear you say, but I don't always want to play around in a
fancy X Windows' user interface—sometimes I'd like to be able to just scan an
image using the command line. You can do that, too. Although their manual
boasts that the GUI makes their product “more user friendly than hpscanpbm”,
it's also distributed with sjscan, a command-line scanning utility.

By the way, while XVScan can read and write in several different image formats,
their manual warns:

xv has a whopping grand total of two internal image
formats: 8-bit color mapped and 24-bit RGB. Every
image you load is converted to one of these two
formats, as part of the image loading procedure,
before you ever see the image.

In other words, you might occasionally get some minor artifacts creeping into
the images as they're converted back and forth—but if this is a serious
problem, I have yet to encounter it.

Conclusion

I did a search on DejaNews (http://www.dejanews.com/) while researching this
review, to see if I could find any negative comments people had posted to
Usenet about XVScan. I couldn't find any. The closest thing I found to a negative
remark was a few die-hard free software fans grumbling about having to
actually pay money for it. On the whole, everyone who had used the software
seemed to recommend it. In fact, in response to a general question about
scanning under Linux, one user suggested that the person asking should buy
an HP ScanJet just so he could run XVScan.

Personally, I like having an environment that allows me to do high-quality scans
and to manipulate the image within the same application. I'm far too used to
programs that do just one thing well; XVScan appears to aim at doing
everything well, and I think it succeeds.

Michael Montoure is the webmaster for Specialized Systems Consultants, the
publishers of Linux Journal. He's been on the Internet for the better part of a
decade now, used to wish everyone would use it, and now is sorry he said
anything. As long as you don't want to tell him how to “Make Money Fast”, feel
free to send him e-mail at info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Java Series

Kirk Petersen

Issue #40, August 1997

Since The Java Series is from the writers of the actual software, it is the official
source of information regarding the Java programming language, virtual
machine and API.

• Publisher: Addison-Wesley
• Phone/Fax: 617-955-3700; 617-942-3077
• URL: http://www.aw.com/devpress/
• Reviewer: Kirk Petersen

If you have recently visited the computer section of a bookstore, you have seen
the mind-boggling number of Java-related books available. Many bookstores
have sections dedicated solely to Java, just as they have sections for
programming languages and the Internet. What makes this even more
incredible is that the first Java book showed up just a little over a year ago.

The Java Series is a set of nine books written by members of the Java team. This
series is published by Addison-Wesley.

Since The Java Series is from the writers of the actual software, it is the official
source of information regarding the Java programming language, virtual
machine and API. If you want the definitive answer to a Java-related question,
these books are the place to look.

This review covers five of the books from The Java Series. The first four are The
Java Virtual Machine Specification, The Java Language Specification and The Java
Application Programming Interface (two volumes). These are the technical
references that describe the entire Java environment. Also included is a review

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of Concurrent Programming in Java, which isn't a definitive reference like the
rest but certainly deserves its place in the series.

• Title: The Java Virtual Machine Specification
• Authors: Tim Lindholm and Frank Yellin
• Price: $36.75
• ISBN: 0-201-63452-X

All too often, people either forget or don't know that Java is more than just a
programming language. Actually, the most important part of Java may be the
virtual machine. It provides the binary portability that makes Java so important
in network environments, and where would Java be without the Internet? That
is why I chose to start with The Java Virtual Machine Specification.

One way of looking at the JVM is to think of it as just another 32-bit CPU. It has
many of the same components, including an instruction set, registers and the
ability to do common operations on a similar set of data types. In many ways,
The Java Virtual Machine Specification is like a reference manual you would get
from a major CPU manufacturer—it contains an instruction reference and
other reference material.

However, just as the JVM isn't exactly like most CPUs, The Java Virtual Machine
Specification isn't exactly like most CPU reference manuals. It is a well-written
book that is more than just instruction set references and explanations of the
data types. This book (excluding the instruction set reference) can be read
straight through and enjoyed. For example, Chapter 7 provides a very
interesting tutorial called “Compiling for the JVM”. Not only would this be useful
to compiler writers, but it would give any Java programmer insight into what his
code is really doing. Actually, the book presents this information so well that it
might encourage people, who wouldn't otherwise do so, to write useful
bytecode utilities.

The book begins with a short and unexceptional introduction. It consists of a
one-page history of Java, a one-page introduction to the virtual machine and a
very brief chapter summary.

Chapter 2 is titled “Java Concepts”, and it summarizes the features of the Java
programming language. The next chapter details the structure of the Java
Virtual Machine. Data types, registers, stacks and many similar concepts are
defined. The class file format and instruction set are introduced towards the
end of Chapter 3.

In Chapter 4, the class file format is defined. Like most file format descriptions,
a pseudo-code data structure is given which shows how the data are arranged

in the file. Each field in this structure is described in an easy-to-understand and
thorough manner.

Constant pool resolution is the topic of Chapter 5. The constant pool is similar
to the symbol table found in conventional languages. In Java the constant pool
allows the instruction set to refer to objects with a pair of bytes instead of the
full name. In addition to describing the reason for the constant pool, the
chapter explains how it is used in the process of loading, linking and initializing
class files.

The instruction set for the Java Virtual Machine is found in Chapter 6. A short
introduction is followed by 180 pages of well- organized bytecode descriptions.

Chapter 7 outlines the process of compiling source code to the JVM. This is
done with examples of Java source code and the corresponding JVM bytecodes.
The authors then describe how and why the compiler generated the bytecodes
it did. Many examples in the chapter describe everything from compiling a
simple for loop to throwing and handling exceptions.

The Java Virtual Machine Specification is a very useful book that is well worth
reading. Although it is fundamentally a reference, it is remarkably easy to read.
Therefore, I recommend it to anyone who wants to know more about the low-
level workings of Java.

• Title: The Java Language Specification
• Authors: James Gosling, Bill Joy and Guy Steele
• Price: $36.75
• ISBN: 0-201-63451-1

The Java Language Specification defines the Java programming language. For
those of you who are trying to learn the Java programming language, you
should know that this book is not a tutorial. It is a reference that includes every
possible detail of the Java programming language.

In addition to defining the structure of the language, The Java Language
Specification has numerous code samples that help illustrate specific rules.
These are very helpful, especially since the descriptions often favor syntactic
precision over human understanding.

The introduction consists of a quick description of Java and a chapter summary.
It is followed by a brief chapter describing the grammar the rest of the book
uses to explain the Java language.

The lexical structure of Java is described in Chapter 3. It begins with some notes
on how Java uses Unicode, then goes into the low-level parsing of the source
code files. This includes the definition of things such as white space, identifiers,
keywords and so on. The chapter ends with a definition of the various types of
literals, separators and operators.

“Types, Values and Variables” (Chapter 4) defines the various types that are
available in Java. Primitive types are discussed first, including the ranges and
operations of the integer, floating-point and boolean types, then reference
types are defined. Since references deal with objects, some of the more
primitive objects are outlined, including the class Object and class String. The
chapter ends with a summary of the seven different types of variables in Java.

“Conversions and Promotions” (Chapter 5) defines the ways that the type of a
variable can be changed. Conversions on both primitive and reference types
are defined, as is the unique string conversion.

Chapter 6 defines the concept of a name in Java. Names are used to refer to
packages, classes, members of an object and variables. The concepts of scope,
inheritance and access control are also defined to the extent that they are used
in naming.

In Java, classes can be organized into groups based on their functionality. These
groups, called packages, are defined in Chapter 7. Included in this chapter are
conventions for the naming and storing of packages.

Classes and interfaces are described in Chapters 8 and 9. These chapters
provide good descriptions of all aspects, from keywords that modify classes
and interfaces to the workings of inheritance and overloading.

Chapter 10 describes how arrays work in Java. The chapter begins with the
assertion that arrays are objects, but of a distinct type. The chapter describes
how arrays are similar to and different from other objects.

Exceptions are defined in Chapter 11. The chapter begins with a basic
description of how the language constructs interact with the Throwable objects.
It moves on to the causes of exceptions, and the end of the chapter describes
all the exceptions the programmer will face.

Chapter 12 defines in an interesting way how the language interacts with the
Java Virtual Machine. It begins with a description of what the virtual machine
does when it is starting up. It moves on to a description of the loading and
linking of classes, and ends with a description of how the virtual machine exits.

Probably the most interesting chapter of the book is Chapter 13. It describes in
what ways old class files should remain compatible with new class files. The
authors give many examples of code that should be binary compatible and how
to make sure they are.

Chapters 14 and 15 describe the more traditional aspects of the Java language.
The statements are defined, and then the way in which they are executed is
outlined.

In Java, a value must be assigned to a local variable before it can be used. This
is called “definite assignment” and is the topic of Chapter 16. It is very slow
reading and will most likely be best used as a reference.

Threads and locks are introduced in Chapter 17, beginning with a description of
how things differ when more than one thread of Java code is executing at a
time. The chapter ends with some examples of situations that make multi-
threaded code difficult, and the corresponding Java constructs that can solve
the problems.

Java takes the two comment styles present in C++ and adds a third. This new
comment style allows class interfaces, hierarchies and programmer
documentation to be turned into web pages. Chapter 18 gives a description
and an example.

Chapter 19 lists the LALR(1) grammar—probably of tremendous interest to
compiler writers.

Finally, the book ends with an API reference that covers the java.lang, java.util
and java.io packages. These are the core packages that must be present in all
Java environments. They are covered in a bit more detail here than they are in
The Java API.

The Java Language Specification is a good language reference. However, I don't
think most people need a book this specific. I recommend it primarily to
compiler writers or anyone else who is building a language-based tool.

• Title: The Java Application Programming Interface, Volumes I & II
• Authors: James Gosling, Frank Yellin and The Java Team
• Price: $38.75 each
• ISBN: 0-201-63453-8, 0-201-63453-7

The Java API is a reference book describing the classes that are part of the Java
Development Kit. It is fairly simple and doesn't contain very detailed
descriptions.

The book is split into two volumes sold separately. Volume I contains “Class
Hierarchy Diagrams”, “Package java.lang”, “Package java.io”, “Package java.util”
and “Package java.net”. Volume II contains “Package java.awt”, “Package
java.awt.image”, “Package java.awt.peer” and “Package java.applet”.

I have a hard time recommending The Java API. There are now several books
that are better deals. The Class Libraries is basically a superset of The Java API
with more information about the way the classes work, and it includes
numerous code samples. Or, if you are looking to save some money, you might
want to get Java in a Nutshell by O'Reilly and Associates. It has a very nice, albeit
small, API reference and only costs $20. It is my favorite Java book and is nice
and soft from nearly a year of constant use.

• Title: Concurrent Programming in Java
• Authors: Doug Lea
• Price: $23.86
• ISBN: 0-201-69581-2

Although there are many Java books out there, I haven't found many that use
Java to teach an advanced programming concept. Concurrent Programming in
Java is one of the few. I have always been aware of Java's concurrency
mechanisms, but this book taught me how they can be used for real work.

The introduction is much better than those of the other four Java books
reviewed here. First, the author lists some advantages and limitations of
concurrency. Then the purpose of the book is given, followed by a typical
chapter summary and a description of Java's concurrency mechanisms.

Chapter 2 defines the concept of safety with regard to concurrent
programming; it outlines the methods by which multiple threads can execute
on the same data so that “nothing bad ever happens”. These methods include
using immutable objects, synchronization and containment.

Liveness could be considered the opposite of safety. Chapter 3 describes
liveness problems and methods that can be used to solve them.

Chapter 4 covers the concept of state-dependent action. The author describes
many possible actions that can be taken when a set of states is reached.

Concurrency control is covered in Chapter 5. Three approaches to concurrency
control are covered. Examples are shown using Java, but the concepts are
useful in any language.

Chapter 6 is titled “Services in Threads”. It explains how common tasks can be
separated into threads. At this point the book becomes really interesting,
because the reader can see how the concurrency concepts can work in real
programs.

Chapter 7 describes how the flow policies implemented by a program affect
safety and liveness issues. Finally, methods of coordinating more independent
objects are outlined in Chapter 8.

Concurrent Programming in Java is a very good book. It is nice to see a book go
into the details of a subject that hasn't already been beaten to death (the
Applet class, for example).

If you have a lot of experience doing multi-threaded programming, you may
find Concurrent Programming in Java a bit too simple and vague. Probably all
you need is a description of Java's concurrency mechanisms. However, if you
have little or no experience making concurrent programs, this book has a lot to
teach you.

Conclusions

The series as a whole works well. As the marketing material says, it represents
the definitive source of Java information. I haven't found any books outside this
series that add much in terms of raw information.

Although these books are well-produced and provide valuable information, I
can't recommend that everyone go buy them. If you are a student with a
limited budget, as I am, you might want to look into something like Java in a
Nutshell (O'Reilly and Associates). It provides a tutorial for C programmers who
are trying to learn Java and also has an good API reference. Other places to find
cheap information on Java include the SSC API reference cards and JavaSoft's
web page.

On the other hand, if the price of a $30-$40 reference book doesn't make a
dent in your wallet and you need to have the official source of Java information,
all five of these books are very good deals.

One final consideration—a new version of the Java Development Kit has just
been released. It has introduced numerous changes and additions to the class
library. Therefore, I suggest waiting to buy an API reference until it includes JDK
1.1 information.

Kirk Petersen is a senior attending The Evergreen State College. He is currently
searching for a job (Java and/or Linux) in Seattle. Leisure activities include
playing pool and studying music. His e-mail address is kirk@speakeasy.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux Database

Sid Wentworth

Issue #40, August 1997

This volume covers a database that just happens to use Linux as the underlying
platform, which makes it quite different from most Linux books.

• Author: Fred Butzen & Dorothy Forbes
• Publisher: MIS:Press
• ISBN: 1-55828-491-5
• Price: $39.95
• Pages: 561 (plus CD)
• Reviewer: Sid Wentworth

The Linux Database is the third in the Slackware series from MIS:Press.

This volume covers a database that just happens to use Linux as the underlying
platform, which makes it quite different from most Linux books.

The first part of the book deals with relational databases and the second with
programming a database application. Both sections contain good information
from which much can be learned about databases. The word Linux does not
appear within the first section.

There are three chapters in the first part. The first chapter introduces the
relational modes, the second addresses the principles of database design and
the final chapter introduces structured query language (SQL). The first chapter
deals with theory and introduces the idea of a baseball team database whose
development is followed throughout. Chapters 2 and 3 include examples of
database issues which are easy for someone with a programming background
to understand.

The first chapter in Part 2 introduces the architecture of database applications
and presents the three-tier model: access, business logic and user interface.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The following chapters introduce the Open DataBase Connectivity (ODBC) call
line interface, the Java DataBase Connectivity (JDBC) applications program
interface and embedded SQL. The author explains how to actually access a
database using each of these three methods. The focus is on interconnecting
the database with a web page.

Chapter 6 develops the front ends using both HTML/CGI and Java. Examples of
code and HTML increase at this point in the book. The final chapter presents
what the authors call middleware, the semantic logic that controls the actions
of the other two tiers.

Each chapter concludes with a summary and references to other sources of
information, which are both current and the right choices. The CD includes a
standard Slackware distribution of Linux plus four databases: Just Logic, mSQL,
Postres95 and Ingres. The included version of Just Logic is “crippleware”--that is,
it will process only 1000 commands. mSQL is free for non-commercial use, and
information on registering for commercial use is included. Postgres and Ingres
are both under the UCB (University of California Berkeley) copyright, which
pretty much grants free use for any purpose.

The Linux Database is well written and fairly easy to read in spite of the fact
that much of the material is rather technical in nature. If you are interested in
relational databases, this book, the included CD, a PC and a lot of time can get
you up to speed. If you aren't a student but have a professional interest in a
relational database, the included tools and documentation will get you well on
your way. Also, having four databases to work with will help you pick the right
tool for your task.

Sid Wentworth lives in Uzbekistan, where he divides his time between UUCP
hacking, raising yaks and visiting the tomb of his personal hero, Tamerlane the
Great.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Web Crawler in Perl

Mike Thomas

Issue #40, August 1997

Here's how spiders search the Web collecting information for you.

Web-crawling robots, or spiders, have a certain mystique among Internet users.
We all use search engines like Lycos and Infoseek to find resources on the
Internet, and these engines use spiders to gather the information they present
to us. Very few of us, however, actually use a spider program directly.

Spiders are network applications which traverse the Web, accumulating
statistics about the content found. So how does a web spider work? The
algorithm is straightforward:

1. Create a queue of URLs to be searched beginning with one or more
known URLs.

2. Pull a URL out of the queue and fetch the Hypertext Markup Language
(HTML) page which can be found at that location.

3. Scan the HTML page looking for new-found hyperlinks. Add the URLs for
any hyperlinks found to the URL queue.

4. If there are URLs left in the queue, go to step 2.

Listing 1 is a program, spider.pl, which implements the above algorithm in Perl.
This program should run on any Linux system with Perl version 4 or higher
installed. Note that all code mentioned in this article assumes Perl is installed in
/usr/bin/Perl. These scripts are available for download on my web page at
http://www.javanet.com/~thomas/.

To run the spider at the shell prompt use the command:

spider.pl <starting-URL<search-phrase>

The spider will commence the search. The starting URL must be fully specified,
or it may not parse correctly. The spider searches the initial page and all its

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/040/2200l1.html

descendant pages for the given search phrase. The URL of any page with a
match is printed. To print a list of URLs from the SSC site containing the phrase
“Linux Journal”, type:

spider.pl http://www.ssc.com/ "Linux Journal"

The Perl variable $DEBUG, defined in the first few lines of spider.pl, is used to
control the amount of output the spider produces. $DEBUG can range from 0
(matching URLs are printed) to 2 (status of the program and dumps of internal
data structures are output).

Interaction with the Internet

The most interesting thing about the spider program is the fact that it is a
network program. The subroutine get_http() encapsulates all the network
programming required to implement a spider; it does the “fetch” alluded to in
step 2 of the above algorithm. This subroutine opens a socket to a server and
uses the HTTP protocol to retrieve a page. If the server has a port number
appended to it, this port is used to establish the connection; otherwise, the
well-known port 80 is used.

Once a connection to the remote machine has been established, get_http()

sends a string such as:

GET /index.html HTTP/1.0

This string is followed by two newline characters. This is a snippet of the
Hypertext Transport Protocol (HTTP), the protocol on which the Web is based.
This request asks the web server to which we are connected to send the
contents of the file /index.html to us. get_http() then reads the socket until an
end of file is encountered. Since HTTP is a connectionless protocol, this is the
extent of the conversation. We submit a request, the web server sends a
response and the connection is terminated.

The response from the web server consists of a header, as specified by the
HTTP standard, and the HTML-tagged text making up the page. These two parts
of the response are separated by a blank line. Running the spider at debug
level 2 will display the HTTP headers for you as a page is fetched. The following
is a typical response from a web server.

HTTP/1.0 200 OK
Date: Tue, 11 Feb 1997 21:54:05 GMT
Server: Apache/1.0.5
Content-type: text/html
Content-length: 79
Last-modified: Fri, 22 Nov 1996 10:11:48 GMT
<HTML><TITLE>My Web Page</TITLE>
<BODY>
This is my web page.

</BODY>
</HTML>

The spider program checks the Content-type field in the HTTP header as it
arrives. If the content is of any MIME type other than text/html or text/plain, the
download is aborted. This avoids the time-consuming download of things like
.Z and .tar.gz files, which we don't wish to search. While most sites use the FTP
protocol to transfer this type of file, more and more sites are using HTTP.

There is a hardware dependency in get_http() that you should be aware of if
you are running Linux on a SPARC or Alpha. When building the network
addresses for the socket, the Perl pack() routine is used to encode integer data.
The line:

$sockaddr="S n a4 x8";

is suitable only for 32-bit CPUs. To get around this, see Mike Mull's article “Perl
and Sockets” in LJ Issue 35.

The URL Queue

Once the spider has downloaded the HTML source for a web page, we can scan
it for text matching the search phrase and notify the user if we find a match.

We can also find any hypertext links embedded in the page and use them as a
starting point for a further search. This is exactly what the spider program
does; it scans the HTML content for anchor tags of the form

and adds any links it finds to its queue of URLs.

A hyperlink in an HTML page can be in one of several forms. Some of these
must be combined with the URL of the page in which they're embedded to get
a complete URL. This is done by the fqURL() function. It combines the URL of
the current page and the URL of a hyperlink found in that page to produce a
complete URL for the hyperlink.

For example, here are some links which might be found in a fictitious web page
at http://www.ddd.com/clients/index.html, together with the resulting URL
produced by fqURL().

URL in Anchor Tag Resulting URL

http://www.eee.org/index.html http://www.eee.org/index.html

att.html http://www.ddd.com/clients/att.html

As these examples show, the spider can handle both a fully-specified URL and a
URL with only a document name. When only a document name is given, it can
be either a fully qualified path or a relative path. In addition, the spider can
handle URLs with port numbers embedded, e.g., http://www.ddd.com:1234/
index.html.

One function not implemented in fqURL() is the stripping of back-references (../)
from a URL. Ideally, the URL /test/.../index.html is translated to /index.html, and
we know that both point to the same document.

Once we have a fully-specified URL for a hyperlink, we can add it to our queue
of URLs to be scanned. One concern that crops up is how to limit our search to
a given subset of the Internet. An unrestricted search would end up
downloading a good portion of the world-wide Internet content—not
something we want to do to our compadres with whom we share network
bandwidth. The approach spider.pl takes is to discard any URL that does not
have the same host name as the beginning URL; thus, the spider is limited to a
single host. We could also extend the program to specify a set of legal hosts,
allowing a small group of servers to be searched for content.

Another issue that arises when handling the links we've found is how to
prevent the spider from going in circles. Circular hyperlinks are very common
on the Web. For example, page A has a link to page B, and page B has a link
back to page A. If we point our spider at page A, it finds the link to B and checks
it out. On B it finds a link to A and checks it out. This loop continues indefinitely.
The easiest way to avoid getting trapped in a loop is to keep track of where the
spider has been and ensure that it doesn't return. Step 2 in the algorithm
shown at the beginning of this article suggests that we “pull a URL out of our
queue” and visit it. The spider program doesn't remove the URL from the
queue. Instead, it marks that URL as having been scanned. If the spider later
finds a hyperlink to this URL, it can ignore it, knowing it has already visited the
page. Our URL queue holds both visited and unvisited URLs.

The set of pages the spider has visited will grow steadily, and the set of pages it
has yet to visit can grow and and shrink quickly, depending on the number of
hyperlinks found in each page. If a large site is to be traversed you may need to
store the URL queue in a database, rather than in memory as we've done here.
The associative array that holds the URL queue, %URLqueue, could easily be
linked to a GDBM database with the Perl 4 functions dbmopen() and dbmclose()

or Perl 5 functions tie() and untie().

/att.html http://www.ddd.com/att.html

Responsible Use

Note that you should not unleash this beast on the Internet at large, not only
because of the bandwidth it consumes, but also because of Internet
conventions. The document request the spider sends is a one line GET request.
To strictly follow the HTTP protocol, it should also include User-Agent and From

fields, giving the remote server the opportunity to deny our request and/or
collect statistics.

This program also ignores the “robots.txt” convention that is used by
administrators to deny access to robots. The file /robots.txt should be checked
before any further scanning of a host. This file indicates if scanning from a
robot is welcome and declares any subdirectories that are off-limits. A
robots.txt file that excludes scanning of only 2 directories looks like this:

Useuagent: *
Disallow: /tmp/
Disallow: /cgi-bin/

A file that prohibits all scanning on a particular web server looks like this:

User-agent: *
Disallow: /

Robots like our spider can place a heavy load on a web server, and we don't
wish to use it on servers that have been declared off-limits to robots by their
administrators

Application of the spider.pl Script

How might we use the spider program, other than as a curiosity? One use for
the program would be as a replacement for one of the web site index and
query programs like Harvest (http://harvest.cs.colorado.edu/Harvest/) or Excite
for Web Servers (http://www.excite.com/navigate/prodinfo.html). These
programs are large and complicated. They often provide the functionality of the
Perl spider program, a means of archiving the text retrieved and a CGI query
engine to run against the resulting database. Ongoing maintenance is required,
since the query engine runs against the database rather than against the actual
site content; therefore, the database must be regenerated whenever a change
is made to the content of the site.

Some search engines, such as Excite for Web Servers, cannot index the content
at a remote site. These engines build their database from the files which make
up the web site, rather than from data retrieved across a network. If you had
two web sites whose content was to appear in a single search application, these
tools would not be appropriate. Furthermore, the Linux version of Excite for
Web Servers is still in the “coming soon” stage.

Listing 2 and Listing 3 show a simple CGI search engine that is implemented
using the spider.pl program. Listing 2 is an HTML form which calls spiderfind.cgi
to process its input. Listing 3 is spiderfind.cgi. It first uses Brigitte Jellinek's
library to move the data entered in the form into an associative array. It then
calls the spider.pl program using the Perl system() function and passes the
form data as parameters. Finally, it converts the output from spider.pl into a
series of HTML links. The user's browser will display a list of hyperlinked URLs
in which the search text was found. Note that the name of the host to search is
specified by a hidden field in the HTML document. There are better and more
security-conscious ways for two Perl programs to interact than through a Perl
system() call, but I wanted to use an unmodified copy of spider.pl for this
demonstration.

This script doesn't provide the complete functionality of the packages
mentioned above, and it won't perform as well. Since we're doing the search
against web server documents across the Net, we don't have the advantage of
index files; therefore, the search will be slower and more processor-intensive.
However, this script is easy to install and easier to maintain than those engines.

Another application that could be built using the spider.pl program is a broken
link scanner for the Web. The HTTP response we showed previously began with
the line “HTTP/1.0 200 OK”, indicating the request could be fulfilled. If we tried
to hit a URL with a non-existent document, we would get the line “HTTP/1.0 404

Not found” instead. We could use this as an indication that the document does
not exist and print the URL which referenced this page.

The modifications to the spider program needed to accomplish this are minor.
Every time a hyperlink's URL is added to the URL queue, we also record the URL
of the document in which we found the hyperlink. Then, when the spider
checks out the hyperlink and receives a “404 Not found” response, it outputs
the URL of the referring page.

Mike Thomas is an Internet application developer working for a consulting firm
in Saskatchewan, Canada. Mike lives in Massachusetts and uses two Linux
systems to telecommute 2000 miles to his job and to Graduate School at the
University of Regina. He can be reached by e-mail at thomas@javanet.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/040/2200l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/2200l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Templates: Separating Programs from Design

Reuven M. Lerner

Issue #40, August 1997

Make web site design changes easier by using templates—HTML pages with
embedded Perl code.

If you are running a small web site, then you are probably responsible for
everything—server administration, the site's content and the CGI programs that
produce variable and dynamic content.

If your site is of any significant size, the work is probably divided among a
number of people. Indeed, most large sites divide their staffs between the
people who are responsible for the site's content and design, and those who
are responsible for the infrastructure and technical side of the site.

Such a division undoubtedly makes it easier to administer a site. After all, it is
much easier to find someone to write content or to write CGI programs than to
do both. In addition, splitting the work according to function allows everyone to
do what he does best.

At the same time, such a division makes it difficult for sites to maintain a
uniform presentation style. CGI programs produce HTML that must match the
style of the rest of the site. This might mean inserting a certain header at the
top of each page, using a particular background color or inserting a graphic on
the side of each page.

In other words, there are two separate sources for HTML content on a web site.
The pages of HTML created by the designers, and the HTML produced by the
CGI programs. If a site does not change its style often (or at all), the fact that the
HTML comes from two sources does not matter. The designers establish a style
for the site, which is then adopted by both designers and programmers for
their work.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

However, many sites have taken to redesigning every few months, partly due to
continually improved technology that allows designers to create more
interesting, exciting experiences on their sites. Every time a site's design
changes, all of the existing content must be rewritten to fit the new design.
Sites that have split their content between programmer-generated HTML and
CGI-generated HTML will find themselves having to convert two types of files
with two separate staffs.

For example, let's assume that a site has standardized white-on-blue text. Each
time the designers create a new page, they make sure to include a <body> tag
of the form:

<body bgcolor="blue" fgcolor="white">

In order for the site to have a uniform look, all of the CGI programs on this site
must include a similar <body> tag at the top of their output. Here is a basic
“hello, world” page that demonstrates how to accomplish this:

#!/usr/bin/perl -w
use strict;
use diagnostics;
use CGI; # Available from http://www.perl.com/CPAN
Create an instance of CGI
my $query = new CGI;
Send an appropriate MIME header
print $query->header("text/html");
Begin the HTML, with our colors indicated
print $query->start_html(
 -title => "Hello, world!",
 -bgcolor => "blue",
 -fgcolor => "white");
Send our message
print "<P>Hello, world!</P>\n";
End the HTML
print $query->end_html;

If this program were run as a CGI program from within a web server, it would
produce a short page of HTML on our screens, with a the text appearing in
white text on a blue background. (And yes, we should use hex codes for
consistent colors across platforms, but this is just meant to be an easy
example.)

After creating an instance of CGI (an object module freely available from CPAN
at http://www.perl.com/CPAN), the program sends a MIME header indicating
that it will be sending HTML-formatted text to the user's browser. Following
that MIME header, it sends a <body> tag, hidden somewhat by the start_html

method that takes care of such tag production for us.

Finally, we send our short message, marked up in HTML, and invoke the
end_html method, which sends a </body> tag to end the body of the HTML text
and an </html> tag to indicate the end of the HTML page.

What happens when the designers decide that white-on-blue text is passe, and
that they would rather have a more modern look (along the lines of Wired
magazine) with orange text on a green background? It would not be very
difficult for the designers to perform a global “search and replace” on the
<body> tags appearing within the HTML files on the site. To modify each of the
CGI programs on the server is much trickier.

A Simple Solution

One solution is to put all of our design-related variables in a library module that
we can import into our programs. Here is an example of such a module called
SiteDesign:

#!/usr/bin/perl -w
package SiteDesign;
$background_text = "white";
$foreground_text = "blue";
1;

The above module is named by the package statement. Following that
statement, variables and functions are assumed to begin with the string
SiteDesign::. To avoid problems with the package names when variables are
imported into a program, we have turned off the normally helpful construct use

strict.

Assume that the above code is placed in a file named SiteDesign.pm, and the
file is placed in a directory named by the special Perl variable @INC (the list of
directories in which Perl modules are located). Our programs should now be
able to include this library with the statement:

use SiteDesign;

In other words, we could rewrite our “Hello, world” program as:

#!/usr/bin/perl -w
use strict;
use diagnostics;
use CGI; # Available from http://www.perl.com/CPAN
use SiteDesign;
Create an instance of CGI
my $query = new CGI;
Send an appropriate MIME header
print $query->header("text/html");
Begin the HTML, with our colors indicated
print $query->start_html(
 -title => "Hello, world!",
 -bgcolor => $SiteDesign::background_text,
 -fgcolor => $SiteDesign::foreground_text);
Send our message
print "<P>Hello, world!</P>\n";
End the HTML
print $query->end_html;

This code is certainly an improvement over the first version of our program, in
that the HTML produced by our programs can be changed without having to

modify the programs. Existing CGI programs do have to be changed so that
they make use of SiteDesign.pm—but you only have to change your existing
code once, rather than each time the site's design changes.

This approach is useful in many ways, but it does not solve all of the problems.
While we have reduced the amount of work that a site's programmers need to
perform each time the designers change their minds, we have not eliminated it
entirely. The designers still have to come to the technical staff each time they
wish to make such changes.

Furthermore, there is a practical limit to the number of ways in which we can
affect our programs' output by setting variables. We could add a variable
indicating which image, if any, should be displayed at the top of each page,
another variable indicating whether an image should be displayed at the
bottom of the page, another variable indicating the font size, yet another for
whether the first paragraph should be centered, and so forth, ad infinitum.
Sure, it would still be easier to change these variables than to change the
output of each CGI program, but this solution does not scale well to a large
number of variables. Would you want to be the programmer asked to modify
30 configuration variables each time the site's design was changed?

One possible solution to this problem is to put the variables in a configuration
file, similar to the quiz file that we have discussed over the last few months.
Such a file, particularly if it were masked by an interface consisting of CGI
programs and HTML forms, would allow designers to modify the site's design
without having to bother the programmers. However, designers would still
have to deal with the large number of configuration variables, as well as
understand what they mean. And programmers would still have to write code
taking all sorts of styling possibilities into account.

In other words, the use of variables to indicate styling is better than nothing at
all but is far from a perfect solution. What we would like is a way of creating
pages of HTML that could be modified by designers, and also gives the
possibility of executing code within those pages of HTML.

Templates

Luckily, we can create such hybrid Perl/HTML pages using the Text::Template

Perl module, written by Mark-Jason Dominus. This module, available from
CPAN at http://www.perl.com/CPAN/, allows us to take such hybrid files,
evaluate the Perl parts, leave the pure HTML alone and send the results to the
user's web browser. While the template module is identified as beta software
and is not guaranteed to be stable, I have been using it for some time and have
not encountered any problems. (I wish that I could say that about some of the
commercial software that I use.) Although The template module is not designed

to work exclusively with HTML pages, it is in this area that I have found it to be
highly useful.

Templates are pages of HTML that contain zero or more pieces of Perl code.
(Thus, a plain HTML file is also a template, although such files don't do anything
special.) The Perl code is contained inside the curly braces that Perl uses to
identify blocks within programs. For example, here is one template that
displays the time of day as recorded on the server:

<HTML>
<Head>
<Title>Welcome to our site</Title>
</Head>
<Body>
<P>Welcome to our site!The time is now
{localtime;}
</>P
</Body>
</HTML>

At first glance, the above template appears to be HTML and nothing more. If
you look within the curly braces ({ }), you will see Perl code hiding there. In this
particular case, we have used the Perl function “localtime”, which prints out the
time and date using the standard Unix format.

Because the above file looks and acts like HTML—it is HTML, after all, except for
the Perl code—we can give it to our designers, who can change the layout in
any way they might like. If they wish to insert an image before/after the time or
if they wish to center the time of day, they can do so by using the familiar HTML
tags. The site's programmers merely have to stress the importance of not
modifying the text contained within the curly braces, which should be off-limits
to them. By the same token, the site's programmers should only modify the
code contained within the curly braces, since that is the portion for which they
are responsible.

By using templates, we get the best of both worlds. Pages can contain
programs, and thus, can modify their output depending on circumstances,
while styling is still determined by the HTML surrounding the blocks of code.

Writing templates is admittedly something that takes a bit of time to grasp;
however, the principles of writing templates are easy to understand. As
mentioned above, anything within curly braces is considered to be Perl code
and is replaced by the results of its evaluation. Thus, the expression:

{ 2 + 2; }

returns 4, and the expression:

{
 $browser = $ENV{"HTTP_USER_AGENT"};

 $outputstring = "<P>You are using \"$browser\"
as your browser.</P>\n";
}

returns a string telling the user which browser he is using, bracketed by HTML
“paragraph” tags.

It is also possible to make calculations in one block of Perl and to use the
results of those calculations in a later block. Thus, we can create the following:

<HTML>
<Head>
<Title>Welcome to our site</Title>
</Head>
{
$time = localtime;
$browser = $ENV{"HTTP_USER_AGENT"};
}
<Body>
<P>Welcome to our site! The time is now
{ $time; }
</P>
<P>You are using {$browser;} to view our site.</P>
</Body>
</HTML>

In this code, we use the first block of Perl to assign variables needed in the rest
of the template. It might seem a bit contrived but can be of great help when
creating large, complicated templates to set up a number of variables in the
first block and then to refer to them in subsequent blocks.

If we are not careful when writing blocks of code, we can accidentally insert
some extraneous characters into our resulting page of HTML. In the above
example, the first block of code assigns values to variables. The code block itself
returns the value of $browser, since that was the last variable assignment. In
other words, our users see the name of their browser twice—once where the
first block sits and the second, where we might expect to see it, in the third Perl
block.

In order to avoid such problems, I generally use a variable named
$outputstring, which is used solely for the purpose of sending output to the
resulting page of HTML. At the beginning of each block, I assign $outputstring

the empty string (""), ensuring that it is not tainted by values from previous
blocks. The last line of each block is then set to $outputstring;, which evaluates
to the value of $outputstring and is sent to the user's browser. In between
these two uses of $outputstring I can perform any calculations that I want—and
anything that I want to send to the user is simply concatenated onto the
current value of $outputstring.

Since CGI variables are actually environment variables and child processes
inherit environment variables from their parents, we can also access CGI
variables from within our templates. We have already seen this in the above

examples, when we retrieve $ENV{"HTTP_USER_AGENT"}, which should return
the identifying string that web browsers send to web servers along with their
document requests.

Because the code inside templates is full-blown Perl, we can use all of the
techniques and code that we ordinarily use, including the use of library
modules for databases, centralized libraries of code, and just about anything
else available.

Of course, you need to be sure that your code is debugged before releasing it
on an unsuspecting public. It is quite embarrassing to create a template and
put it out in a public area of your web site, only to discover a bug that causes
the entire template to crash. Actually, the template won't crash; the template

module is smart enough to catch problems and point them out on the resulting
page of HTML. Debugging templates can be tricky, so be sure to allocate
additional testing and debugging time whenever you use templates rather than
straight CGI programs.

The Template Wrapper

So, how do we turn a hybrid Perl/HTML template into plain HTML to be sent to
the user's browser? If users were shown these templates without some sort of
translation, they would appear as HTML files with the Perl reproduced verbatim
on the user's screen. This display is obviously not desirable.

The key is to have a CGI program, called wrapper.pl, to take the name of a
template in its query string (i.e., the argument that a CGI program receives
following the question mark in the URL). Once it has received the template
name, wrapper.pl creates an instance of Text::Template and instructs that
module to perform the magic necessary to turn our template into a page of
HTML.We can then send the resulting HTML to our user's browser. As far as the
user is concerned, the page was and is HTML; he does not know that we have
used a template to create our output.

Here is a simple version of wrapper.pl:

#!/usr/bin/perl -
use strict;
use diagnostics;
use CGI;
use Text::Template;
Create an instance of CGI
my $query = new CGI;
Send an appropriate MIME header
print $query-header("text/html");
Get the name of the template
my $file = "/home/httpd/html/templates/" . $query-param("keywords");
Create an instance of template
my $template = new Text::Template(-type => FILE,
 -source => $file);
Perform the evaluation, and send the results

to the user's browser
print $template-fill_in;

This program may appear quite simple, but we have hidden a great deal of
depth within our calls to Text::Template—first when we open the file and when
we ask the Template object to evaluate each of the small Perl programs inside
the indicated template, it does so. Finally, we take the results of that evaluation
and send them to the user's browser with the print statement.

Assuming the directory in which templates are stored not only makes the
resulting URLs shorter but also makes your site somewhat more secure, since
outsiders will not know your file system. It is also a good idea to remove any
references to the parent directory (represented with “..”) in the filename passed
to wrapper.pl, so as to avoid turning our program into a convenient way of
looking at all of the files on the server's hard disk. One easy way to do this is to
replace the original assignment of $file with the following two lines:

Get the name of the template
my $file = "/home/httpd/html/templates/" . $query->param("keywords");
Remove possible security problems
$file =~ s|/\.\./|/|g;

This will remove attempts to ascend one or more directories, making it more
difficult for someone to spy on the contents of our server.

Thus, if we have a template named /home/httpd/html/templates/test.tmpl and
a site called www.oursite.com, we can view the template in translated form by
using the URL http://www.oursite.com/cgi-bin/wrapper.pl?test.tmpl. If we have
another template in the same directory named foo.html, we can view it using
the URL http://www.oursite.com/cgi-bin/wrapper.pl?foo.html.

One odd note that you should remember when creating templates is the fact
that they are effectively served out of the CGI directory on your server (usually
called cgi-bin). In all of the above templates, this does not make any difference.
If our templates were to incorporate images whose URLs were named relatively
(i.e., without a leading slash) rather than absolutely (i.e., with a leading slash),
this could cause a problem.

For example, it is quite common for HTML files to be placed in one directory,
while the images used by those files are placed in a subdirectory, perhaps
named “images”. In order to create an HTML file with an image inside of it, we
could do the following:

<HTML>
<Head>
<Title>Example of image</Title>
</Head>
<Body>
<P>This is a sample Web page, containing an image.</P>

</Body>
</HTML>

But if we were to take this same file and feed it through wrapper.pl, the image
would no longer appear. That's because the “image” subdirectory exists relative
to the directory in which the HTML file resides, rather than the directory in
which the CGI program resides.

One quick solution to this problem is to use the <base> HTML tag, with a URL
other than the one under which it was invoked. The <base> tag looks like:

<base href="http://www.oursite.com/text/english/">

With this tag in place, our browser will know to load the image in the above
template from http://www.oursite.com/text/english/images, regardless of
whether the document was loaded from within the CGI directory or the original
HTML directory. The problem with this approach is that it makes it more
difficult to move files and directories to other places on the site—a trade-off
that is often worth making.

One word of warning before I conclude. Normally, access to the CGI directory
and to the programs contained within it is restricted to a small set of
programmers who can be trusted to write and modify code on your system.
With templates, that group is suddenly expanded to include all of the site's
designers, who could theoretically modify the code within a template to
perform malicious acts. Remember that since templates include code, it is a
good idea to restrict access to the directory containing the templates, rather
than granting it to everyone on your system.

In short, templates are a useful way to separate the design of a web site from
the CGI programs it contains. By using them wisely, you will give everyone more
freedom to do what they enjoy, as well as what they do best.

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #40, August 1997

Readers sound off.

Using PPP

I have read many articles about PPP connections. The descriptions were huge
and targeted complex tasks. That's why I always delayed configuring my system
for a simple PPP connection.

That was true until I read the article “A 10-Minute Guide for Using PPP” in the
April issue of LJ. I followed the instructions (just changed the init-string for my
modem) and...it worked at once. Wow! Thanks very much to Terry Dawson for
his excellent article and to LJ for publishing it. —Andreas Zisowsky, Berlin
zisowsky@fokus.gmd.de

Exit Xenix, Linux is here.

In the March 1997 issue of LJ, E. Leibovitch wrote an article entitled “The Death
of Xenix” about the opportunities offered by the near death of Xenix.
Undoubtedly, LJ is in touch with its readers, or at least one of them.

I would like to tell you about my experience. A few years ago, the library of a
high school (Lycee Victor Hugo, Colomiers, France) was computerized by means
of an AT386PC with Xenix as OS and dedicated software. This system is now
collapsing.

As a technical engineer working for the CRDP (Centre Regional de
Documentation Pedagogique—a government organization acting in the area of
educational services), I proposed that the existing system be replaced with an
actual PC box with Linux as OS and the existing Wyse terminals should be
reused. Our goal was to expand by installing an Intranet service to distribute
the library databases into all the lycee (schools) using the existing Ethernet-
based pedagogic network.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I encountered a few difficulties caused by:

1. lack of personal knowledge of the necessary setup,
2. inability to find not-too-new hardware (yesterday's software doesn't

always work on today's hardware),
3. problems compiling the dedicated software: it worked first under IBCS,

but I thought it would be better to get a genuine version. I am now in the
test assembly stage.

Many thanks to LJ and its team for helping to sustain the Linux movement. —
Jean Francois Bardou France devpoly@crdp231.crdp-toulouse.fr

PPP Control for Mortals

I tried your C program as shown in LJ in the article “Safely Running Programs as
root” by Phil Hughes in the May 1997 issue. It compiled and worked like a
champ. Keep it up; that sort of program is very helpful to strugglers like myself.
Looks to me as though I could simply add it to the root menu in FVWM to bring
it up and take it down. I'll let you know if it works. Thanks. —Jim Smith
jim@oz.net

Bristol Zoo Location

On page 14 of May's LJ (From the Editor), you stated that Bristol Zoo is in
Swansea. In fact, Bristol Zoo is in Bristol (75 miles from Swansea).

The confusion may have arisen because Alan Cox, at least at one point, had a
Swansea University e-mail address and may still live in Swansea. I've never met
Alan, so this is mere speculation. —Martin Radford M.P. Radford@exeter.ac.uk

Yes, the press release from Alan Cox originated from Swansea, and I assumed
quite wrongly that the zoo was located there. Sorry —Ed.

Linux Appliance

I read your article “Linux—The Internet Appliance” in the April issue of Linux
Journal. It is a subject I have also thought about and agree with your main
points.

I think you missed one key point: the users you target probably don't want a
floppy or a CD-ROM. A disposable small IDE hard disk would serve your
machine much better. What do I mean by disposable? One that can be changed

out without disrupting their service. One that is automatically backed up by the
ISP. One that serves the following needs:

• boot device
• swap space
• web-page cache
• off-line letter writing
• configuration information

In short, performance. Changing out the hard disk (to one that has been freshly
dd(1)'d from a master, followed by a 10-second transfer of the account's setup
from the ISP database) will be almost transparent to the customer, except that
all the caches are empty, and therefore, they will slog along for a while like
everybody else at home. When the caches fill up (200MB is cheap), all the usual
pages and images will work as we rich, ethernetted folk expect.

Besides, by dropping the CD-ROM and floppy, and going to a smaller case and
power supply, I think the cost total (including $200 monitor) is closer to $600
today than the $800 you suggest.

• 80 Fast 486 motherboard w/CPU
• 50 8M RAM (we have swap, remember?)
• 50 1M Cirrus video card (intended 800x600 16-bit mode)
• 120 540M IDE drive (buy out a warehouse of discontinued models)
• 60 28.8 modem
• 40 Sound card “Hi, my name is Leenus Torrrvalds and I pronounce

Leeenux as Leeenux”
• 50 Case, Power supply, Keyboard, Mouse, lousy speakers
• 200 14 inch 800x600ni monitor
• 50 Assembly and testing
• 600 Total

Perilously close to the $500 target, right? In volume, you could probably get
there now by contracting a custom motherboard, with embedded video,
modem, sound, and power supply. It would then no longer be a PC-compatible
(no ISA slots), but anyone who wanted that stuff could trade in for a “real” PC.
The assumption of your article, which I support, is that there will be a large
volume of people who don't want to fuss with it—just plug it in and use it. —
Larry Doolittle ldoolitt@jlab.org

Bliss Misinformation

1. McAfee didn't find it [i.e., the Bliss virus, mentioned in From the Editor,
May 1997—Ed.]—they were told about it. The author announced the fact
that his Trojan had “accidentally” got out. Was it really an accident? Who
knows?

2. It didn't “spread” to Linux systems. The released version of the Trojan was
targeted specifically at Linux, although the author confirms OpenBSD, NT
and other compile builds [with the Trojan] are trivial.

Bliss is a very simple Trojan. It sits on the front of files, copies itself into other
stuff when run and spreads in that way. As such, not doing things as root will
help a lot. Basic common sense like using PGP-signed packages and not
installing random binaries as root also helps. —Alan Cox alan@cymru.net

Script Listings

I look forward to each issue of Linux Journal and usually read it from cover to
cover the day it arrives in my mailbox. Your article on page 10 of the May issue,
“Safely Running Programs as Root”, was very helpful. Before, my method of
logging in to the Internet was to log in to my computer as root, start ppp-go,
run ifconfig and edit /etc/hosts, then switch to another virtual terminal, log in
with my davidm user name and fire up the X-server and Netscape.

Whenever I wanted to disconnect from my access provider, I would have to
switch to su and run ppp-off. Now, things are much simpler. I grabbed your
listing from the FTP site and in five minutes had your ppp.c program up and
running. I am able to open and close my access connection at will without
having to switch to root. Thanks for the story and for putting the code listings
on your FTP server.

I thoroughly enjoy using Linux and reading Linux Journal. If you get a chance,
check out my column on Linux at the following URL: http://www.charleston.net/
entertain/click3.html. —David W. MacDougall, South Carolina
davidm@Charleston.Net

Linux in Schools

In my free time, I read a whole slew of computer magazines on subjects ranging
from Windows NT to LANs. One thing that struck me the other day was how
much fun it was to read the Linux Journal. It seems that every columnist writes
with such enthusiasm for the subject. This is a refreshing change from the
other mainstream magazines, which seem to complain about everything. Your
authors enjoy writing about how far Linux can be pushed and how it can be
reshaped into something new.

Granted, Linux is not a high-dollar commercial OS like the others, but I believe
that is to its advantage. You have to be amazed with the way it was, and is,
being developed. It shows how a large diversity of people can come together
for a common cause (one that didn't include money) to create an extremely fun
and useful product.

I have specified Linux as the OS for one of the servers (Pentium Pro 200 MHz,
128MB RAM, 4GB HD) in the public school system I work for. I look forward to
using it both at home and work. I'd like to hear from other EdTech folks who
use Linux in a school environment. —Rob Bellville, Millbury, MA
rob@millbury.k12.ma.us

Linux—Not for Newbees?

I am still a Newbee after 18 months of working with Linux off and on. I feel I
must comment on Stop the Presses by Phil Hughes in your April issue: “Usenix/
Uselinux in Anaheim” on page 8. In that report it was stated that Linus Torvalds
hinted at “world domination” with Linux.

After my venture into the Linux OS, it seems to me that there is still a long way
to go. It appears that Linux has been authored by a large number of academics
who each make a mark on the system. I have found a large number of help files
to be out of sync with the code they are trying to explain. I have just started
working with pppd after signing up with an ISP provider and find the various
configurations expressed in the files confusing. It is true I am not a genius, but
if one wants to have a system appeal to the “regular joes” out in the real world,
setting the system up will have to be made easier.

I am certain I will eventually sort out my problem. It will take a lot of work and
learning on my part, which I don't mind—I enjoy sorting out a difficulty and
getting it solved. I am going to stick it out until I can connect with my Linux box
and get some work done out on the Internet. To that end, I have Linux on
separate hard drives on two machines so that I have a backup in case I corrupt
one.

Anyhow, keep up the great work in LJ, as I do find it very helpful to keep abreast
of what is going on out there. —Kurt Savegnago ksaves@prairienet.org

Article Choices

I used to like Linux Journal because of the low-level, programmer-oriented
topics in it. Unfortunately, the past few issues have been on the boring parts of
Linux, such as platforms and networking. The majority of Linux users are not
into the many platforms or top-of-the-line systems, but into the hacking of the
kernel and the fun of how it works. I am more than willing to have some articles

included on the higher levels of technology, but I would also like to see many
articles on the hacking of the kernel and nifty applications for Linux.

Thank you for putting out such a good magazine. I would hate to see it turn into
just another PC Magazine type of magazine. —Patrick Temple
patemple@erols.com

Platforms and networking certainly seem to be popular subjects, judging from
the response we get to articles about them. Although we sometimes miss, we
do always try to have a Kernel Korner for the kernel hackers as well as articles
on new applications. We do our best to present a balance of topics —Ed.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

From the Editor

Marjorie Richardson

Issue #40, August 1997

On the formation of GLUE.

In the Linux Journal 1997 Buyer's Guide, SSC announced the formation of GLUE
—Groups of Linux Users Everywhere. GLUE was implemented to provide a
world-wide member group for Linux User Groups. Since three months have
passed, I felt an update would be in order. Complete information about the
advantages to GLUE membership can be found at its web site, http://
www.ssc.com/glue/.

Lydia Kinata, SSC Product Specialist, tells me there has been a good response to
GLUE from both user groups and vendors. At the time I talked to her (May 1),
SSC was in the process of setting up an e-mail list server for use by the groups.
Lydia was particularly excited about the decision by Enhanced Software
Technologies to provide a free copy of the BRU 200 Backup and Restore Utility
to each GLUE member group, as well as a 10% discount on the BRU software to
individual members of the user groups. Enhanced Software (http://
www.estinc.com/) is located in Tempe, Arizona and recently became a
corporate member of Linux International.

London Times

As I'm sure everyone has heard by now, in April The London Times printed an
article by David Hewson 1 which trashed Linux and the “geeks” who use it. I just
reread that article to determine if I needed to respond to it in some way.
Frankly, after reading through phrases like “nasty piece of digital scurf”, “that
old computer donkey known as Unix” and “a certain breed of bug-eyed
computer user”, I was laughing too much to take it seriously. However, I did find
the notion of “Bill Gates quivering in his boots at the idea that Linux will ... kick
Microsoft Windows off the everyday desktop” rather appealing. At any rate I
found Hewson's rantings amusing and, most certainly, nothing to incite a flame
war. (The Sunday Times - 20 April 1997, Sounding Off: Linux, the PC Program

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

from Hell, by David Hewson, http://www.the-times.cp.uk/news/pages/
resources/libraryl.n.html?1032133.)

New Printer

From January of 1996 through June of 1997 Linux Journal has been printed by
R. R. Donnelly in Senatobia, Mississippi. Beginning with last month's issue, it is
now printed by Century Publishing in Post Falls, Idaho. One reason we made
this change was to have a printer in the same time zone. More importantly, we
wanted a printer closer to us so that we could reduce the lead time in
producing the magazine. Century fit both these needs. Century is also known to
us: Century was the first printer for Linux Journal, and SSC has continued to use
them for printing the SSC catalog.

The new subscriber will be the main beneficiary of the shorter lead time—he'll
get his first issue sooner. Other benefits will include later deadlines for articles
and advertising materials.

We believe this change to be a positive move on our part and look forward to a
long and harmonious working relationship with Century.

Coming Up

Our next couple of issues will be focusing on Education and Training Using
Linux and Linux as a Development Platform. We'll round out the year with
another Graphics and Multimedia issue, then focus on System Administration
in December. We have a lot of good articles being written for the first three, but
commitments for system administration articles are lagging. So, I'd like to
remind all you authors that we keep a “wish list” of articles on our web site,
http://www.ssc.com/lj/wanted.html. Check it out, and if you find one you're
interested in, write us at info@linuxjournal.com.

For some time now, we have wanted to run a cartoon each month. Although we
have someone who can draw cartoons, he knows nothing about Linux. Send
your favorite one-line Linux jokes to info@linuxjournal.com, and if we can, we'll
turn them into cartoons.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Trademark Dispute

Phil Hughes

Issue #40, August 1997

Being on the Board of Directors of Linux International, I was a participant as
well as an observer in the battle.

At this point it looks like the good guys will win. As I write this (June 4) there is a
verbal agreement which will give the Linux community clear title to the Linux
name. By the time you read this article there should be a final, written
agreement. For details, select the Hot Linux News button on our web page at
http://www.ssc.com/lj/.

For those of you new to the trademark dispute, let me fill in a little history. In
1996, Linux vendors (including us) started receiving letters from an attorney
representing Mr. William Della Croce, Jr. requesting royalties for our use of his
trademark. Investigation revealed that he did in fact have a trademark on the
Linux name.

The Linux vendor community decided to fight the battle together and, through
Linux International, enlisted the services of G. Gervaise Davis III of Davis &
Schroder (http://www.iplaywers.com). Gerry Davis had already jumped on the
bandwagon because he knew of the Linux effort. His willingness to take the
case because he cared cut our costs substantially.

Being on the Board of Directors of Linux International, I was a participant as
well as an observer in the battle. While not everyone agreed with every decision
along the way, we all shared the common goal of getting the Linux trademark
clearly into the hands of the Linux community. Even with our diverse
backgrounds we managed to pull together the necessary information and
resources to present a common front.

For example, when we found out that Mr. Della Croce's trademark was filed in
1994, Adam Richter of Yggdrasil Computing jumped forward with information
that he was shipping Linux on CDs in December, 1992. Also, a few hundred

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

thousand copies of Linux Journal published in 1993 certainly had to help our
case.

Where Are We Now?

First and foremost, we have proved that while we may have competing
commercial interests, we can work together for the common good of the Linux
community. I also think that while this action was costly to Linux vendors it has
helped Linux become legitimate in the eyes of the non-believers. Besides the
vendors who are members of Linux International that supported the effort, we
have received letters from many of our readers asking if there was a place to
send money to help support the effort. This shows the sense of cooperation
that made Linux possible in the first place.

Thanks to everyone that helped.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #40, August 1997

Cyclades-Z Multiport Serial Cards: S.u.S.E. Linux Version 4.4.1, LinkScan Version
2.1, AllConnect, 3DGO, and more...

Cyclades-Z Multiport Serial Cards

Cyclades Corporation announced a new family of multiport serial cards for the
ISP and corporate remote access needs. The Cyclades-Z family sustains
effective serial speeds of up to 460Kbps and is available in low-cost boards with
8 ports to rack-mountable models expandable to 64ports/slot. The product is
being introduced with support for both Linux and NT operating systems. The 8-
port model is priced at $623, but ISPs and first-time buyers can get the board at
the promotional prices ($399 for an 8-port model) for a limited time.

Contact: Cyclades Corporation, 41934 Christy Street, Fremont, CA 94538,
Phone: 510-770-9727 ext. 206, Fax: 510-770-0355, E-mail: info@cyclades.com,
URL: http://www.cyclades.com/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

S.u.S.E. Linux Version 4.4.1

S.u.S.E. announced S.u.S.E. Linux Version 4.4.1, a distribution of the Linux
operating system, which brings 32-bit multitasking Unix to Intel-based PCs. The
new version contains X Window support via XFree86 3.2A, RPM packages,
modular kernel 2.0.29, Teles 16.3 ISDN card support and a DOS emulator that is
loadable without recompiling the kernel. Software highlights include LNX, the
Java Development Kit and an HTML-based help system. The distribution
features three CD-ROMs, a 400-page reference book and the YaST setup and
management tool.

Contact: S.u.S.E., LLC, 458 Santa Clara Avenue, Oakland, CA, 94610, Phone:
510-835-7873, Fax: 510-835-7875, E-mail: jgray@suse.com, URL: http://
www.suse.com/.

LinkScan Version 2.1

Electronic Software Publishing Corporation (Elsop) introduced new features in
LinkScan version 2.1 that enhance its power and flexibility for checking Internet
and Intranet web sites. Elsop has added a number of features, including
support for server aliases, server redirections and selective execution of CGI
scripts. LinkScan also supports proxy servers. Elsop's LinkScan reports and site
maps may be viewed using any standard Web browser. Free fully functional
evaluation copies of LinkScan can be downloaded from the company's web site
at: http://www.elsop.com/.

Contact: Electronic Software Publishing Corporation, 1504 #8-00200 Main
Street, Gardenerville, NV 89410-5273, E-mail: linkscan@elsop.com, URL: http://
www.elsop.com/.

AllConnect

Empress Software, Inc. announced support for Digital Equipment Corporation's
AllConnect for Unix, a program designed to assist software developers in the
integration and migration of Unix and Windows NT applications. Empress has
also recently unveiled a combination of RDBMS development tools, including
the Embedded Empress RDBMS Developer's Toolkits for Unix and NT. The
toolkits include the Empress RDBMS, the Empress HTML Toolkit for interfacing
database driven applications to the Internet/Intranet and the Empress ODBC
Server which enables use of the RDBMS with 3rd-party ODBC-compliant tools.
The Toolkits are available for $1,000 for 2 users on NT, $5,600 for typical
workstations and $22,400 for mid-range servers.

Contact: Empress Software Incorporated, 6401 Golden Triangle Drive,
Greenbelt, MD, 20770, Phone: 301-220-1919, Fax: 301-220-1997, E-mail:
sales@empress.com, URL: http://www.empress.com/.

3DGO

ELECTROGIG, a software company specializing in ray tracing, animating and
modeling, announced that 3DGO (version 3.2) is available for the Linux PC
platform and a beta version is available for the MkLinux platform. (3DGO was
developed on the SGI Unix platform.) A demo-version of 3DGO for Linux can be
downloaded from ftp://ftp.gig.nl/demo/.

Contact: ELECTROGIG Technology, Phone: 31-20-4624600, Fax: 31-20-4650990,
E-mail: info@gig.nl, URL: http://www.gig.nl/products/prodinfo.html/.

XRT Products and Metro Link Motif

KL Group, Inc. and Metro Link, Inc. announced today that Metro Link's Motif for
Linux will now include KL Group's XRT Professional Developer's Suite free. XRT
PDS is a recently announced suite of market-leading widgets and utilities for
professional Motif developers. Metro Link Motif is popular with Linux users
who wish to implement the industry standard Motif Graphical User Interface.
Metro Link Motif 2.0.1, including the free XRT PDS has a list price of $199. The
free version is functionally identical to KL Group's standard product, except that
it does not come with printed documentation. Complete on-line documentation
is included.

Contact: Metro Link, Incorporated, 4711 North Powerline Road, Fort
Lauderdale, FL, 33309, Phone: 954-938-0283, Fax: 954-938-1982, E-mail:
sales@metrolink.com, URL: http://www.metrolink.com/.

Contact: KL Group, 260 King Street East, Floor Three, Toronto, ON, Canada,
Phone: 416-594-1026, E-mail:info@klg.com, URL: http://www.klg.com/.

MPAS

Strategic Forecasting, L.L.C. announced the release of MPAS (Multi-Platform
Access System). MPAS provides resource management functionality similar to
NT and Novell but at a lower cost. It runs on DOS, Windows 3.x and Windows95
clients and supports links to virtually any server platform. MPAS' single step
login provides a cross-platform system interface allowing Windows and DOS
users controlled, secure access to personal or shared files from any server on
the network. The system administrator can re-map a user's virtual drives in a
matter of minutes. Maintenance and system changes can be performed

without interference to the user's activities. MPAS version 1.01 is available at a
special introductory price of $10 per client with a minimum 20 seat purchase.

Contact: Strategic Forecasting, L.L.C., 617 North Blvd., Suite 400 Baton Rouge,
LA 70802, Phone: 504-267-5507. Fax: 504-267-4108, E-mail: info@mpas.com,
URL: http://www.mpas.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

SATAN: Analyzing Your Network

Rob Havelt

Issue #40, August 1997

SATAN checks out your network for possible openings that hackers can use to
invade your system.

The creators of SATAN (System Administrator's Tool for Analyzing Networks)
feel that the reason most systems are vulnerable to attack is that most System
Administrators don't think like system crackers. Actually, thinking this way may
require you to look at simple, seemingly harmless network services in a new
light.

To the system cracker, basic network services are a doorway into a computer
system. So, before you go into the office one morning and see a bunch of
unusual utmp entries, it is beneficial to check just how accessible those
doorways are. A great starting point for checking the doors is to run a SATAN
scan on your network.

Requirements

SATAN can be run on Linux with a few modifications. Requirements for running
SATAN are:

1. A machine that can handle it—which means a box with a relatively fast
processor (e.g., Alpha, 486) and at least 32MB of RAM

2. A recent distribution of the SATAN source code (satan-1.1.1)
3. Perl 5 or greater
4. A set of BSD-4.4 compatible include files, available from ftp://

ftp.wooddimensions.com/webserv/security/linux/
5. A patch to fix the mistaken assumptions about how select() works in

tcp_scan.c (tcp_scan.c.diff)
6. A WWW browser (A graphical browser like Netscape or Mosaic is

preferable, but you can also use a text browser like Lynx.)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

7. A C compiler like gcc

Building SATAN

When you have all of these elements, you can begin to build SATAN. First you
want to untar the archive. Just issue the command:

zcat satan-1.1.1.tar.Z | tar xvf -

This command creates a subdirectory called satan-1.1.1. Next, apply the patch
to tcp_scan.c. I tend to use Emacs for patching, as it makes everything a little
more visual. Load the patch into one buffer, tcp_scan.c into another, and
choose Patch. Of course, using the patch command works fine too. Now, untar
the BSD-4.4 compatible include files. The easiest way to do this is to gunzip the
archive and move it into the root of the satan-1.1.1 directory, and then type:

tar xvf BSD-4.4.includes.tar

The archive will expand into the include/netinet/ directory.

Having done this, you are ready to compile SATAN. The program comes with a
script, called reconfig, which will configure it on your system. Any Linux user
who has used SATAN before knows that bash has trouble with the syntax of
this script. The easiest way around this is to type:

perl reconfig

at the command prompt, rather than:

./reconfig

The reconfig script will detect your web browser and Perl and compile the
SATAN binaries. If it detects the wrong web browser, edit the script config/
paths.pl and change the line:

$MOSAIC="program name"

You are now ready to run SATAN. Type ./satan at the command prompt, and
SATAN will fire up your web browser.

If Netscape is your browser of choice, make sure you have a mime type defined
for application/x-perl, and no suffix is defined for this type. Defining the suffix
as .pl will result in errors every time you try to execute a script.

Stay Away from Precompiled Binaries

Even if all of the above steps sound like a major pain, you should still get the
sources and build SATAN yourself. I would strongly urge you not to request,

post or use precompiled binaries of SATAN. SATAN must be run as root, and a
bad or malicious build can do volumes of damage. There have already been
several reports of Trojans found in builds for Linux. Building SATAN for Linux
might take a few extra steps, but it is definitely worth the effort.

After the Scan

SATAN will dutifully scan your network and report back all the potential
weaknesses that it finds—that is its job. It will even tell you how those
weaknesses might be exploitable. It will not fix any problems or keep unwanted
guests out—that is your job. No program can be a substitute for an astute
Security Administrator.

To run a tight ship you must keep the crew in line, which means educating your
users on the importance of a good password. (It's up to you whether you send
out security memos, post in the MOTD or actually periodically attempt to crack
/etc/passwd and lock out accounts you were able to crack.) Along with
password education, educate your users on the dangers of keeping large
.rhosts files in their home directories. The more unknown systems trusted, the
greater the risk to your own system.

Finally, take a look at your system in the same way an educated cracker might.
Subscribe to 2600 and Phrack, if your hacking skills are not up to snuff. Take a
look at the network services you are running and think of possible ways you
could exploit them. Read the latest CERT (http://www.cert.org/). advisories for
all systems (as many common programs come from the same roots, they
sometimes share the same weaknesses) and, using this information,
periodically try to break into your own system. If you are new to system
security or if you are unsure how to go about exploiting network services, try all
the cookbook approaches used in such texts as The System Administrator's
Guide to Cracking (included with the SATAN distribution). There are also a lot of
IRC channels and web sites where hacking and cracking are discussed. Visit
these sites and listen in or ask questions. Your users are depending on you to
have the system up and running—with a little work, you won't disappoint them.

Rob Havelt is the Webmaster/Security Administrator at Wood Dimensions Ltd.
in Detroit, MI, a full-service Internet and Computer Aided Design Firm (http://
www.wdl.net/). He can be reached at rob@wdl.net. He is a self-proclaimed
technology addict and can usually be found designing 3D graphics and virtual
worlds.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Non-Technical Look inside the EXT2 File System

Randy Appleton

Issue #40, August 1997

How the EXT2 file system is organized on the disk and how it gets its speed.

Everyone wants a fast computer; however, not everyone realizes that one of
the most important factors of computer performance is the speed of the file
system. Regardless of how fast your CPU is, if the file system is slow, then the
whole computer will seem slow. Many people who have very fast Pentium Pros
with slow disk drives and even slower networked file systems rediscover this
fact daily.

Linux has a very fast file system called the Extended File System Version 2

(EXT2). The EXT2 file system was created by Remy Card (card@masi.ibp.fr).

Disk Layout

There are several objectives when deciding how to lay out data on a disk.

First and foremost, the data structure should be recoverable. If there is an error
while writing data to the disk (like a user pulling the power cord), the entire file
system should not be lost. Although losing the data currently being written is
sometimes acceptable, losing all the data on the disk is not.

Second, the data structure must allow for an efficient implementation of all
needed operations. The hardest operation to implement is normally the hard
link. When using a hard link, there is more than one directory entry (i.e., file
name) that points to the same file data. Accessing the data by any of the valid
file names should produce the same data.

Another hard operation involves deleting an open file. If an application has a
file open for access at the same time that a user deletes the file, the application
should still be able to access the file's data. The data should not be cleared off
the disk until the last application closes the file. This sort of behavior is quite

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

unlike DOS/Windows, where deleting a file results in immediate loss of access
to that file by any application in the process of reading/writing to it.
Applications exhibiting this type of Unix behavior are more common than one
might think, and changing it would cause many applications to break.

Third, a disk layout should minimize seek times by clustering data on the disk. A
drive needs more time to read two pieces of data that are widely separated on
the disk than the same sized pieces located close to each other. A good disk
layout can minimize disk seek time (and maximize performance) by clustering
related data close together. For example, parts of the same file should be close
together on disk and, also, near the directory containing the file's name.

Finally, the disk layout should conserve disk space. Conserving disk space was
more important in the past, when hard drives were small and expensive. These
days, conserving disk space is not so important; however, one should not waste
disk space.

Partitions

Partitions are the first level of disk layout. Each disk must have one or more
partitions. The operating system pretends each partition is a separate logical
disk, even though they may share the same physical disk. The most common
use of partitioning is to place more than one file system on the same physical
disk, each in its own partition. Each partition has its own device file in the /dev

directory (e.g., /dev/hda1, /dev/hda2, etc.). Every EXT2 file system occupies one
partition, and completely fills it.

Groups

The EXT2 file system is divided into groups, which are sections of a partition.
The division into groups is done at the time the file system is formatted and
cannot change without reformatting. Each group contains related data. A group
is the unit of clustering in the EXT2 file system. Each group contains a
superblock, a group descriptor, a block bitmap, an inode bitmap, an inode table

and finally data blocks, all in that order.

Superblock

Some information about a file system belongs to the file system as a whole and
not to any particular file or group. This information is stored in the superblock,
and includes the total number of blocks within the file system, the time it was
last checked for errors and so on.

The first superblock is the most important one, since it is the first one read
when the file system is mounted. The information in the superblock is so

important that the file system cannot be mounted without it. If a disk error
occurred while updating the superblock, the entire file system would be ruined;
therefore, a copy of the superblock is kept in each group. If the first superblock
becomes corrupted, the redundant copies can be used to fix the error by using
the command e2fsck.

Group Descriptors and Bitmaps

The next block of each group is the group descriptor. The group descriptor
stores information on each group. Within each group descriptor is a pointer to
the table of inodes (more on inodes in a moment) and allocation bitmaps for
inodes and data blocks.

An allocation bitmap is simply a list of bits describing which blocks or inodes
are in use. For example, data block number 123 is in use if bit number 123 in
the data bitmap is set. Using the data and inode bitmaps, the file system can
determine which blocks and inodes are in current use and which are available
for future use.

Inodes and Such

Each file on disk is associated with exactly one inode. The inode stores
important information about the file including the create and modify times, the
permissions on the file and the owner of the file. The inode also contains the
type of the file (regular file, directory, device file like /dev/ttyS1, etc.) and the
location of the file on disk.

The data in the file is not stored in the inode itself. Instead, the inode points to
the location of the data on disk. There are fifteen pointers to data blocks within
each inode. However, this does not mean that a file can only be fifteen blocks
long. Instead, a file can be millions of blocks long, thanks to the indirect way
that data pointers point to data.

The first thirteen pointers point directly to blocks containing file data. If the file
is thirteen or fewer blocks long, then the file's data is pointed to directly by
pointers within each inode and can be accessed quickly. The fourteenth pointer
is called the indirect pointer and points to a block of pointers, each one of
which points to data on the disk. The fifteenth pointer is called the doubly
indirect pointer and points at a block containing many pointers to blocks each
of which points at data on the disk. The picture shown in Figure 1 should make
things clear.

Figure 1. The pointers between an inode and its associated data.

This scheme allows direct access to all the data of small files (files less than
fourteen blocks long) and still allows for very large files with only a few extra
accesses. As Table 1 shows, almost all files are actually quite small; therefore,
almost all files can be accessed quickly using this scheme.

Table 1. Occurrence of Various File Sizes

Inodes are stored in the inode table, which is at a location pointed to by the
group descriptor within each group. The location and size of the inode table is
set at format time and cannot be changed without reformatting. This means
that the maximum number of files in the file system is also fixed at format time.
However, each time you format the file system you can set the maximum
number of inodes with the -i option to mke2fs.

Directories

No one would like a file system where files were accessed by inode number.
Instead, people want to give textual names to files. Directories associate these
textual names with the inode numbers used internally by the file system. Most
people don't realize that directories are just files where the data is in a special
directory format. In fact, on some older Unix systems, you could run editors on
the directories, just to see what they looked like internally (imagine running vi /

tmp).

Each directory is a list of directory entries. Each directory entry associates one
file name with one inode number and consists of the inode number, the length
of the file name and the actual text of the file name.

The root directory is always stored in inode number two, so that the file system
code can find it at mount time. Subdirectories are implemented by storing the
name of the subdirectory in the name field and the inode number of the
subdirectory in the inode field. Hard links are implemented by storing the same

https://secure2.linuxjournal.com/ljarchive/LJ/040/2151t1.html

inode number with more than one file name. Accessing the file by either name
results in the same inode number, and therefore, the same data.

The special directories “.” and “..” are implemented by storing the names “.” and
“..” in the directory and the inode number of the current and parent directories
in the inode field. The only special treatment these two entries receive is that
they are automatically created when any new directory is made, and that they
cannot be deleted.

Figure 2. Layout of a disk with one partition and four groups.

The File System in Action

The easiest way to understand the EXT2 file system is to watch it in action.

Accessing a file

To explain the EXT2 file system in action, we will need two things: a variable
named DIR that holds directories, and a path name to look up. Some path
names have many components (e.g., /usr/X11/bin/Xrefresh) and others do not
(e.g., /vmlinuz).

Assume that a process wants to open a file. Each process is associated with a
current working directory. All file names that do not start with “/” are resolved
relative to this current working directory and DIR begins with the current
working directory. File names that start with “/” are resolved relative to the root
directory (see chroot for the one exception), and DIR begins with the root
directory.

Each directory name in the path to be resolved is looked up in DIR in turn. This
lookup yields the inode number of the subdirectory we're interested in.

Next, the inode of the subdirectory is accessed. The permissions are checked,
and if you have access permissions, this new directory becomes DIR. Each
subdirectory in the path is treated in this fashion, until only the last component
of the path remains.

When the last component of the pathname is reached, the variable DIR
contains the directory which contains the file name we've been searching for.
Looking in DIR we find the inode number of the file. Accessing this final inode
tells us the location of the data. After checking permissions, you can access the
data.

How many disk accesses were needed to access the data you wanted? A
reasonable maximum is two per subdirectory (one to look up the name, the
other to find the inode) and two more for the actual file name. This effort is
expended only at file open time. After a file has been opened, subsequent
accesses can use the inode's data without looking it up again. Further, caching

eliminates many of the accesses needed to look up a file (more later).

Listing 1

When a new file or directory is created, the EXT2 file system must decide where
to store the data. If the disk is mostly empty, data can be stored almost
anywhere. However, performance is maximized if the data are clustered with
other related data to minimize seek times.

The EXT2 file system attempts to allocate each new directory in the group
containing its parent directory, on the theory that accesses to parent and
children directories will be closely related. The EXT2 file system also attempts to
place files in the same group as their directory entries, because directory
accesses often lead to file accesses. However, if the group is full, the new file or
new directory is placed in some other non-full group.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2151l1.html

The data blocks needed to store directories and files can be found by looking in
the data allocation bitmap. Any needed space in the inode table can be found
by looking in the inode allocation bitmap.

Caching

Like most file systems, the EXT2 system relies very heavily on caching. A cache

is a part of RAM dedicated to holding file system data. The cache holds
directory information inode information and actual file contents. Whenever an
application (like a text editor or a compiler) tries to look up a file name or
requests file data, the EXT2 system first checks the cache. If the answer can be
found in the cache, the request can be answered very quickly indeed without
using the disk.

The cache is filled with data from prior requests. If you request data that you
have never requested before, the data must first be retrieved from disk. Most
of the time most people ask for data they have used before. These repeat
requests are answered quickly from the cache, saving the disk drive much
effort while providing the user quick access.

Of course, each computer has a limited amount of RAM available. Most of that
RAM is used for other things like running applications, leaving perhaps 10% to
30% of total RAM available for the cache. When the cache becomes full, the
oldest unused data (least recently used data) is thrown out. Only recently used
data remains in the cache.

Since larger caches can hold more data, they can also satisfy a larger number of
requests. The figure below shows a typical curve of the total cache size versus
the percent of all requests that can be satisfied from the cache. As you can see
in Figure 3, using more RAM for caching increases the number of requests
answered from the cache, and therefore increases the apparent speed of the
file system.

Figure 3. A typical curve of total cache size versus the number of requests satisfied from the
cache.

Conclusion

As has been said before, one should make things as simple as possible, but no
simpler. The EXT2 file system is rather more complex than most people realize,
but this complexity results in both the full set of Unix operations working
correctly, and good performance. The code is robust and well tested and serves
the Linux community well. We all owe a debt of thanks to M. Card.

Sources for More Information

Randy Appleton is a professor of Computer Science at Northern Michigan
University. He got his Ph.D. at the University of Kentucky. He has been involved
with Linux since before version 0.9. Current research includes high
performance pre-fetching file systems, with a coming port to the 2.X version of
Linux. Other interests include airplanes, especially home-built ones. He can be
reached via e-mail at randy@euclid.acs.nmu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2151s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Big Brother Network Monitoring System

Paul M. Sittler

Issue #40, August 1997

Installing and hacking Big Brother, a web-based Unix network monitoring and
notification system.

Figure 1. Big Brother (Sean MacGuire) is Watching

I wasn't bored: I don't have time to be bored. Texas Agricultural Extension
Service operates a fairly large enterprise-wide network that stretches across
hell's half acre, otherwise known as Texas. We have around 3,000 users in 249
counties and 12 district offices who expect to get their e-mail and files across
our Wide Area Network. Some users actually expect the network to work most
of the time. We use Ethernet networking with Novell servers at some 35
locations, about 15 have routers that are connected via a mixture of 56Kb
circuits, fractional T1, frame-relay and radio links. We are not currently using
barbed wire fences for our network, no matter what you may have heard.

I am privileged to be part of the team that set up and maintains the network.
We do not live in a perfect network world—things happen. Scarcely a day goes
by that we do not have one or more WAN link outages, usually of short
duration. We sometimes have our hands full just keeping all the pieces
connected. Did I mention that the users expect the mail and other software to
actually work?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Cruising the USENET newsgroups, I read a posting about “Big Brother, a
solution to the problem of Unix Systems Monitoring” written by Sean MacGuire
of Montréal, Canada. I was intrigued to notice that Big Brother was a collection
of shell scripts and simple C programs designed to monitor a bunch of Unix
machines on a network. So what if most of our mission critical servers were
Novell-based? Who cares if some of our web servers run on Macintosh, OS/2,
Windows 95 or NT? We use both Linux and various flavors of Unix in a
surprisingly large number of places.

System administrators often reported difficult installations and software
incompatibilities with the monitoring software; thus, frustrated users often
gave us our first hint that all was not well. We had cooked up a number of
homemade monitoring systems; pinging and tracerouting to all the servers can
be very informative. We even looked at a bunch of proprietary (and expensive)
network monitoring systems. It is amazing how much money these systems can
cost.

According to the blurb by Sean MacGuire on Big Brother:

Big Brother is a loosely-coupled distributed set of tools
for monitoring and displaying the current status of an
entire Unix network and notifying the system
administrator should need be. It came about as the
result of automating the day to day tasks encountered
while actively administering Unix systems.

The USENET news article provided a URL to the home site of Big Brother, http://
www.iti.qc.ca/iti/users/sean/bb-dnld/. I pointed my browser to it and was
rewarded with a blue image of a sinister face peering out under the caption “big
brother is watching ”against a purple background. After my initial shock, I
learned that Big Brother featured:

• Web-based status display
• Configurable warning and panic levels
• Notification via pager or e-mail
• Free and included source code

I was fascinated, especially by the last item: “Free and includes source code.” (I
often tell people that Linux isn't free, but priceless.) So what could a priceless
package do for me? What does Big Brother check?

• Connectivity via ping
• HTTP servers up and running
• Disk space usage
• Uptime and CPU usage

• Essential processes still running
• System-generated messages and warnings

Overall, very sensible. Looking for some “gotchas”, I found I would need a Unix-
based machine, a functioning web server and browser (for the display), a
compiler, Kermit and a modem line (for the pager). A web server was no
problem, as we run many. A C compiler came with Linux, and we use Kermit on
many machines with modems. So far, so good.

The Big Brother web site provided links to a few demonstration sites, and a link
to download the program as well. I connected to a demonstration site and was
greeted with an amazing display:

Figure 2

 Legend [BIG BROTHER IMAGE] [help]
 [grn] System OK [BIG BROTHER IMAGE] [info]
 [yel] Attention [BIG BROTHER IMAGE] [page]
 [red] Trouble [BIG BROTHER IMAGE] [view]
 [blu] No report [BIG BROTHER IMAGE]
 Updated @ 22:52 [BIG BROTHER IMAGE]
 conn cpu disk http msgs procs
 iti-s01 [grn] [grn] [grn] [grn] [yel] [grn]
 route-r-000 [grn] - -
- - -
 inet-gw-0 [grn] - -
- - -

As you can see, Big Brother is watching. While enduring the scrutiny of the
Orwellian face peering out at me, I examined the rest of the display. It is
colored like a traffic signal (green/yellow/red), and the update time is clearly
displayed beneath it. To the right of “Big Brother” are four buttons, marked
clearly Help, Info, Page and View. Beneath the header area is a table with six
column headings and three rows, each neatly labelled with a computer host
name. The boxes formed by the intersection of the rows and columns contain

attractive green and yellow balls. The overall effect is like a decorated tree. The
left side of the screen has a yellow tint, gradually becoming black at the center.

Selecting the Help button gives a brief explanation of Big Brother. Choosing the
Info Button provides a much longer and more detailed explanation of the
system, including a graphic that really is worth a thousand words. The Page
button sends a signal to a radio-linked pager—not at all what I had expected.
Finally, the View selection provides a brief but perhaps more useful view of the
information, isolating only the systems with problems.

In my case, only the “iti-s01” system was displayed. My browser cursor
indicated a link as it passed over each colored dot, so I clicked on the blinking
yellow dot and received this message:

yellow Tue Feb 18 22:50:53 EST 1997 Feb 16 12:22:33
iti-s01 kernel: WARNING: / was not properly dismounted

This puzzled me at first. How on earth could it know that? It turns out that Big
Brother (BB) checks the system /var/log/messages file periodically and alerts on
any line that begins with either WARNING or NOTICE. As I am certain Sean
MacGuire is very conscientious, I suspect he adds that line to his message file,
so the viewer can see how Big Brother reports its findings.

Suddenly, my screen spontaneously updated. The update time had changed by
five minutes, and a blinking yellow dot appeared under the column labelled
procs. I clicked on the blinking yellow dot and was informed that the sendmail

process was not running. This got me really interested—Big Brother can
monitor whether selected processes are running.

Being a little puzzled about the screen's ability to update itself, I viewed the
document source and discovered some HTML commands that were new to me:

<META HTTP-EQUIV="REFRESH" CONTENT="120">
<META HTTP-EQUIV="EXPIRES"
CONTENT="Tue Feb 18 23:22:07 CST 1997">

The first META line instructs browsers to get an update every 120 seconds. The
second tells the browser to get a new copy after the expiration time and date—
very clever.

I returned to the graphics window and discovered that the yellow area on the
left had changed to red. A new host name row appeared with a blinking red dot
under the column labelled conn. I clicked on the blinking red dot and read this
message:

red Tue Feb 18 22:59:11 CST 1997 bb-network.sh:
Can't connect to router''000... (paging)

The connection to the machine called router-000 had been interrupted, and the
administrator had been paged. Amazingly, while in Texas, I had become aware
of a network outage in Montréal, Canada. This really had possibilities—perhaps
someday I may get to take a vacation.

Big Brother Installation

I was so impressed with Big Brother that I decided to use it. Sean has
thoughtfully made its acquisition easy, but requests that you fill out an on-line
registration form with your name and e-mail address. He also likes to know
where you heard about Big Brother. I filled out his forms in early November
1996, and received an e-mail survey form in late December. To download Big
Brother and to get technical information about how the system works and how
to install and configure the package, go to http://www.iti.qc.ca/iti/users/sean/
bb-dnld/bb-dnld.html.

When I clicked on the link to download Big Brother, I ended up with a file called
bb-src.tgz. I impetuously gunzipped this to get bb-src.tar. I then thought better
of the impending error of my ways and decided to download and print the
installation instructions before going further. Installation procedures for Big
Brother can be found at http://www.iti.qc.ca/iti/users/sean/bb-dnld/bb-
install.html, as well as other information about how to set up the system. Just in
case, I also grabbed and printed the debugging information (as it turned out, I
did not need it) provided at http://www.iti.qc.ca/iti/users/sean/bb-dnld/bb-
debug.html.

I had no problems following the installation instructions. I decided to make the
$BBHOME directory /usr/src/bb. The automatic configuration routines are said
to work for AIX, FreeBSD, HPUX 10, Irix, Linux, NetBSD, OSF, Red Hat Linux, SCO,
SCO 3/5, Solaris, SunOS4.1 and UnixWare. I can vouch for Linux, Red Hat Linux,
Solaris and SunOS 4.1. The C programs compiled without incident, and the
installation went smoothly. As always, your mileage may vary. In less than an
hour, I was looking at Big Brother's display of colored lights.

At this point, it's a good idea to re-examine the documentation and information
files. Personalize your installation as desired, and above all, have fun.

Hacking Big Brother

I admit it. I am a closet hacker. I saw many things about the stock BB
distribution that I wanted to improve. Big Brother's modular and elegantly
simple construction makes it a joy to modify as desired. The shell scripts are
portable, simple, well documented and easy to understand. The use of the
modified hosts file to determine which hosts to monitor was gratifyingly
familiar. The bbclient script made it extremely easy to move the required

components to another similar Unix host. Sean has done a remarkable job in
making this package easy to install.

I became obsessive-compulsive about hacking BB and modified it slightly,
working from Sean MacGuire's v1.03 distribution as a base. I forwarded my
changes to him for possible inclusion in a later distribution.

Features I added to BB proper include:

• Links to the info files in the brief view (bb2.html), where I needed them
most.

• Links to html info files for each column heading and the column info files
themselves. I placed these files in the html directory along with bb.html
and bb2.html, and gave them boring names like conn.html, cpu.html, ...
smtp.html.

• Checks to determine if ftp servers, pop3 post offices and SMTP Mail
Transfer Agents (MTAs) are accessible ($BBHOME/bin/bb-network.sh).
These checks all use bbnet to telnet to the respective ports. I followed
Sean's style of adding comments to the bb-hosts file as follows:

128.194.44.99 behemoth.tamu.edu # BBPAGER smtp ftp pop3
165.91.132.4 bryan-ctr.tamu.edu # pop3 smtp
128.194.147.128 csdl.tamu.edu # http://csdl.tamu.edu/ ftp smtp

• Some environment variables to $BBHOME/etc/bbdef.sh for the added
monitoring as follows:

#
WARNING AND PANIC LEVELS FOR DIFFERENT
THINGS. SEASON TO TASTE
#
DFPAGE=Y # PAGE ON DISK FULL (Y/N)
CPUPAGE=Y # PAGE FOR CPU Y/N
TELNETPAGE=Y # PAGE ON TELNET FAILURE?
HTTPPAGE=Y # PAGE ON HTTP FAILURE?
FTPPAGE=Y # PAGE ON FTPD FAILURE?
POP3PAGE=Y # PAGE ON POP3 PO FAILURE?
SMTPPAGE=Y # PAGE ON SMTP MTA FAILURE?
export DFPAGE CPUPAGE TELNETPAGE HTTPPAGE\
 FTPPAGE POP3PAGE SMTPPAGE

• Updated the bb-info.html and bb-help.html pages to reflect a version of
1.03a and a date of 10 February 1997. I also modified them to add brief
mention of the new ftp, pop3 and smtp monitoring checks. Specifically, I
changed the bb-help.html file to add new pager codes as follows:

1. 100—Disk Error. Disk is over 95% full...
2. 200—CPU Error. CPU load average is unacceptably high.
3. 300—Process Error. An important process has died.
4. 400—Message file contains a serious error.
5. 500—Network error, can't connect to that IP address.

6. 600—Web server HTTP error—server is down.
7. 610—Ftp server error—server is down.
8. 620—POP3 server error—PopMail Post Office is down.
9. 630—SMTP MTA error—SMTP Mail Host is down.

10. 911—User Page. Message is phone number to call back.

• Added sections to the bb-info.html file to explain the ftp, pop3 and smtp
monitoring.

• Used a standard tag-line file on each html page that identifies the author
and location of the page. Thus, mkbb.sh and mkbb2.sh now look for an
optional tag-line file to incorporate into the html documents that they
generate. The optional files are named mkbb.tag (for mkbb.sh) and
mkbb2.tag (for mkbb2.sh). The shell scripts look for the optional tag-line
files in the $BBHOME/web directory, which is also where the mkbb.sh and
mkbb2.sh files reside.

• Went through ALL of the html-generating scripts and html files to ensure
that they actually had sections and properly placed double quotes around
the various arguments.

• Edited the files so that, for the most part, everything fits on an 80-column
screen.

• Modified $BBHOME/etc/bbsys.sh to make it easier to ignore certain disk
volumes as follows:

DISK INFORMATION
#
DFSORT="4" # % COLUMN - 1
DFUSE="^/dev" # PATTERN FOR LINES TO INCLUDE
DFEXCLUDE="-->E dos|cdrom"
 # PATTERN FOR LINES TO EXCLUDE

• I modified $BBHOME/etc/bbsys.linux, so that the ping program is properly
found, as follows:

bbsys.linux
#
BIG BROTHER
OPERATING SYSTEM DEPENDENT THINGS
THAT ARE NEEDED
#
PING="/bin/ping" # LINUX CONNECTIVITY TEST
PS="/bin/ps -ax" # LINUX
DF="/bin/df -k"
MSGFILE="/var/adm/messages"
TOUCH="/bin/touch" # SPECIAL TO LINUX

• Added the ability to dynamically traceroute and ping each system being
monitored. I spoke with Sean about it, and, in keeping with the KISS (Keep
It Simple, Stupid) principle, we thought these features were best added to
the info files. The user portion is pretty obvious in the source of the info
file. The cgi scripts are very simple shell scripts as shown in Listing 1.

https://secure2.linuxjournal.com/ljarchive/LJ/040/2225l1.html

Future Enhancements of Big Brother

Sean MacGuire is the primary author of Big Brother. In the finest tradition of
decentralized shared software development, Sean solicits improvements,
suggestions and enhancements from all. He then skillfully incorporates them as
appropriate into the Big Brother distribution. Thus, like Linux, Big Brother is in a
dynamic state of positive evolution with contributions from a cast of thousands
(at least dozens). This constrained anarchy produces interesting results with an
international flavor.

Jacob Lundqvist of Sweden is actively improving the paging interface. He has
done a superb job of enhancing the paging portion, adding support for
alphanumeric and SMS pagers. Darren Henderson (Maine, US) added AIX
support. David Brandon (Texas, US) added proper IRIX support and Jeff Matson
(Minnesota, US) made some IRIX fixes. Richard Dansereau (Canada) ported Big
Brother to SCO3 and provided support for other df's. Doug White (Oregon, US)
made some paging script bug fixes. Ron Nelson (Minnesota, US) adapted BB to
Red Hat Linux. Jac Kersing (Netherlands) made some security enhancements to
bbd.c. Alan Cox (Wales) suggested some shell script security modifications.
Douwe Dijkstra (Netherlands) provided SCO 5 support. Erik Johannessen
(Minnesota, US) survived SunOS 4.1.4 installation. Curtis Olson (Minnesota, US)
survived IRIX, Linux and SunOS installations. Gunnar Helliesen (Norway) ported
Big Brother to Ultrix, OSF and NetBSD. Josh Wilmes (Missouri, US) added Solaris
changes for new ping stuff.

Many other unsung heroes around the world are undoubtedly working to
enhance BB at this very moment.

I am (ab)using Big Brother in ways not originally envisioned by its creator, Sean
MacGuire. Texas Agricultural Extension's networks are wildly heterogeneous
mixtures of different operating systems and protocols, rather than a
homogeneous Unix-based network. I would like to see Big Brother learn about
IPX/SPX protocols for Novell connectivity monitoring. I would also like to see Big
Brother data collection modules for Macintosh, Novell, OS/2, Windows 3.1x,
Windows'95 and Windows NT. Rewriting Big Brother in Perl might better serve
these disparate platforms, if I could only find the time.

Big Brother's Impact at Texas Agricultural Extension Service

We now monitor around 122 hosts. Only 20 are actually Unix-based hosts that
run Big Brother's bb program internally. Some 28 are Novell servers, 39 are
routers, and the rest are a mixture of Macintosh, OS/2, Windows 3.1x,
Windows'95 and Windows NT machines running one or more types of servers
(34 FTP or 26 HTTP). We also find it useful to monitor our 31 PopMail post

offices and 43 mail hosts and gateways. We are checking connectivity on three
DNS servers as well, since they are mission critical.

Big Brother (or, as I now affectionately refer to it, “Big Bother”) is now alerting
us to outages five or more times daily. Typically, the system administrator
receives a page. BB's display is checked and the info file is used to traceroute
and ping the offending machine to validate the outage. Many connection
outages involve routers, DSU/CSUs and multiplexors as well as the actual host.
BB's display allows us to quickly see a pattern that aids in diagnosis. The ability
to dynamically traceroute and ping the host from the html info page also helps
to rapidly determine the actual point of failure. If the administrator paged
cannot correct the problem, he relays it to the responsible person or agency.

Before we installed Big Brother, we were frequently notified of these failures by
frustrated users telephoning us. Now, we are often aware of what has failed
before they call. The users are also becoming aware that they can monitor the
network through the WWW interface. In many instances, we are able to actually
correct the problem before it disturbs our users. It is difficult to accurately
measure the time saved, but we estimate that Big Brother has had a net
positive effect overall.

We have a machine in a publicly visible area displaying the brief view of Big
Brother. The green, yellow, red and blue screen splashes are clearly visible far
down the hall, helping our network team to be more aware of problems as they
occur. The accessibility of the WWW page has made Big Brother useful even to
people at the far ends of our network. Thus, Big Brother has become a helpful
member of our network team. Maybe now I'll have time to be bored.

Paul Sittler (p-sittler@tamu.edu) is a human being in the service of Texas
Agricultural Extension, a part of the Texas A&M University System. As a human
being he is, of course, a skilled tool-maker. He enjoys playing with technology
and tries to make it useful to others of his species. He is a shy man of simple
tastes, who still has a discriminating palate with respect to German wine. He is
multilingual, being at least marginally conversant in several human languages
and competent in several computer dialects as well. He was born with a
peculiar genetic defect that requires him to disassemble and reassemble things
rather than merely use them.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #40, August 1997

Our experts answer your technical questions.

Trouble With crontab

I'm having trouble using the crontab file. This is the first time I have tried it and
have not been able to get it working. The daemon crond is running. In my
crontab file I have the following line:

30 6 * * * /home/Talon/automail

automail is a shell script to log on to my Internet provider, get my mail and log
off. As far as I can tell crond never executes this command. —Jeff Largent

Making Programs Executable

Are you sure your automail program is executable? If it isn't, type:

chmod +x /home/Talon/automail

—Pierre Ficheux, Lectra Systèmès pierre@rd.lectra.fr

/dev/fd0 Error Message

When I try to mount /dev/fd0 I get the following error message:

/dev/fd0 is not a block device

What does that mean and how do I fix it? I can fdformat a floppy, but I can't
mount or create a file system on one. —Scott Petinga

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Identifying Block Devices

Check out the type of /dev/fd0—it should be a block device. If it is properly
identified, the leading character for this device in the directory list will be a b.
For example:

$ ls -l /dev/fd0
brwxrwxrwx 1 root floppy 2, 0 Jul 18 1994 /dev/fd0

If the b is not present, re-create the device by typing:

rm /dev/fd0
mknod /dev/fd0 b 2 0

—Pierre Ficheux, Lectra Systèmès pierre@rd.lectra.fr

Mysterious Zombie Process

Every time I start up the X program netcfg, it generates a zombie process. I
haven't been able to get rid of it. Nobody in my dorm can figure this out either.
—Scott

Bug Fixes in netcfg

netcfg is a python script that Red Hat created to ease the configuration of
network parameters. This script has been expanded and had many bugs fixed
since 4.1 was released.

I suggest you upgrade to the latest netcfg-rpm (which is netcfg-2.15-1.i386.rpm
as of this writing). —Mario de Mello Bittencourt Neto, Argo Internet
mneto@buriti.com.br

Limiting Directory Size

How do I limit the size of a directory? I want to limit each customer's directory
to 1MB. If a customer attempts to upload 2MB of content via ftp, I want Linux to
reject the attempt to store more than 1MB. How do I accomplish this disk
management feat? —M. Lamberson

Install Quota Support

This is easy. Install the quota support that will allow you to control the
maximum size of a user's home directory. Assuming that you have FTP
configured to redirect non-anonymous FTP logins to the actual home directory,
it is simply a matter of configuring quota support in your kernel. Just go to /usr/
src/linux and type:

make menuconfig

Under the Filesystems entry, check for quota support. Recompile the kernel,
reboot and you can configure quota as you wish. —Mario de Mello Bittencourt
Neto, Argo Internet mneto@buriti.com.br

init Run Levels

What do the different run levels listed by the init command do? I have looked in
various Unix books and also in Linux Configuration and Installation, but I can't
find any information. —Paul Sutton

Different Levels of Operation

A Unix run level is a state of system configuration. Each level signifies a certain
level of operation. The run levels are controlled (and are relevant to) the init
daemon, which is the first process that is executed when any Unix system is
first loaded.

init's job is to start and stop processes, and the run levels help determine which
to control. The file /etc/inittab contains entries that init uses to decide which
processes to start and how to start them. An entry looks like this:

NM:LEVs:WHEN_AND_HOW:COMMAND

NM is a two-letter identifier for the command—each command must have its
own, unique identifier. LEVs is a list of levels during which to run the command.
It is typically a number or set of numbers from 0-5 but can also be an S or even
nothing, depending on your version of init. WHEN_AND_HOW is an option
specifying when the command should be run, whether init should wait for it to
finish or not, whether it should be restarted when it dies and so on. COMMAND

is the full path and file name of the command to execute.

The run level corresponds to the LEVs list. For example, the following lines are
in my inittab file:

Start the local dial-in services
s0:45:respawn:/usr/local/sbin/mgetty ttyS0 \
 vt100 -D -x 0
s1:45:respawn:/usr/local/sbin/mgetty ttyS2 \
 vt100 -D -x 0

I have defined two processes, s0 and s1, which will be executed any time the
system is in run levels 4 or 5. The respawn option tells init to re-execute the
command when the command terminates. (This allows my dial-in lines to
accept the new callers when users hang up.) Finally, you can see the command
that is run for each entry.

By using run levels, a system administrator can configure a system to
automatically start and stop certain processes when they put their systems into
different run levels. The most common use for this capability is to have a
normal, multi-user level and a single-user administration level. By triggering
this level, they can have their servers automatically terminate user processes
and disable network support in order to administer their systems.

You can get more information on Unix run levels from the INIT(8) and
INITTAB(5) man pages. Since many different Unix flavors exist, there are also
many different versions of init. So, you should examine your man pages for
exact details. —Chad Robinson, BRT Technical Services Corporation
chadr@brttech.com

Making Sense of Core Dumps

How does one read a core dump file? Occasionally, a machine will crash and a
core dump file is output. When I try to read them (using the more command)
they are full of meaningless characters. I have yet to find anything on how to
read these files except for a debugger for debugging the programs that caused
the dump—I never know which program caused the core dump. Any ideas on
other avenues of determining what happened? —G. Hendricks

Using gcc and gdb

Core dump files are process states for the process that died. When a process
terminates with one of various signals (such as SIGSEGV, the segment violation,
typically indicating a memory-related bug in the program) and the process
owner's ulimit (see your shell's man page) allows for core files, a core dump will
be created. It contains information such as the entire set of memory allocated
to the program, where the program was when it died and what it was doing.

A core dump is an invaluable tool to Unix programmers. By using it in
conjunction with a debugger, a programmer can see what went wrong with his
or her program.

To examine one of these files, you typically need two things. First, the program
must be compiled and linked using gcc with the -g switch set, which instructs
the compiler to place debugging information in the executable. Although any
program can produce a core file, the core file can only tell a programmer the
location in the program where the fault occurred and the values of certain
variables if this debugging information is available.

The second tool that is required is the debugger. If you have installed the
development kit, chances are you already have this. The standard Linux

debugger is gdb (the GNU Debugger) and is part of the gcc development kit. A
programmer might then use this command to look at a core file:

gdb programname core

Core files are typically useful only to programmers, and a debugger is not a
very friendly program (gdb is certainly no exception). If you have no
programming experience, you will probably not increase your knowledge of
what went wrong by examining a core file in this way. —Chad Robinson, BRT
Technical Services Corporation chadr@brttech.com

Can't Receive Mail

I have loaded Linux and have all the settings for a full Internet connection. I can
telnet to and from my computer and can send mail out. I have not been able to
configure the system to receive mail. Any suggestions? —Jay Melton

Adding Sendmail to Startup Scripts

Most likely you just don't have sendmail running as a daemon. You can start up
sendmail as a daemon with a command like:

sendmail -bd -q15m

If that doesn't cause any odd errors, you'll want to add that command to your
startup scripts. Check to make sure /etc/rc.d/init.d/sendmail.init exists. If it
does, use the run level editor to make it start in run levels 2, 3 and 5 and stop in
run levels 0, 1 and 6. —Steven Pritchard, President Southern Illinois Linux Users
Group steve@silug.org

Mirroring Sites

With what package and how can you mirror your favorite software site? —
Andreas J. Bathe

Perl Script Mirror

There is a Perl script appropriately called mirror that works great for mirroring
ftp sites. It is available from ftp://sunsite.doc.ic.ac.uk/packages/mirror/ and
comes with excellent documentation. —Steven Pritchard, President Southern
Illinois Linux Users Group steve@silug.org

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/040/toc040.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Designing a Safe Network Using Firewalls
	Paul Wouters
	What is a Firewall?
	Are Firewalls Necessary?
	The Ping of Death
	How Do We Secure Our Network with One or More
Firewalls?
	What Do We Need to Protect?
	The Complex Network
	Configuring the Firewall
	How Do We Monitor What is Going On?
	Random Notes
	Firewalls Are Needed

	Tripping up Intruders with Tripwire
	Kevin Fenzi

	TCFS: Transparent Cryptographic File System
	Ermelindo Mauriello
	The Working of TCFS
	Installing TCFS—Server Side
	Installing TCFS—Client side
	An Example
	Performance

	Wrap a Security Blanket Around Your Computer
	Lee E. Brotzman
	What are TCP_wrappers and How Do They
Work?
	Installing TCP_wrappers
	Configuring TCP_wrappers
	Tracking Usage with Wrappers
	Using Advanced Options
	What TCP_wrappers Cannot Do
	Conclusion

	Programming with the XForms Library, Part 2: Writing an Application
	Thor Sigvaldason
	The Project: A Game Theory Simulator
	The xgtsim Program
	The Flow of the Program
	Some Details
	Things to Try

	Linux Means Business: Security and Authentication with Digital Signatures
	Robb Shecter
	Securely Transmitting Software Upgrades
	Weaknesses
	Authenticating Users without a Database
	Weaknesses

	Interview with Sameer Parekh
	James T. Dennis

	Berkshire PC Watchdog
	David Walker
	Platforms
	Setup and Installation
	Figure 1. Board Switch Settings
	Making It Work
	Setting Up the System rc
Files
	Testing
	Comparison with Other Products
	Conclusion

	XVScan
	Michael Montoure
	Installation
	Getting Started
	Figure 1. XVScan Control Window
	Scanning
	Conclusion

	The Java Series
	Kirk Petersen
	Conclusions

	The Linux Database
	Sid Wentworth

	A Web Crawler in Perl
	Mike Thomas
	Interaction with the Internet
	The URL Queue
	Responsible Use
	Application of the spider.pl Script

	Templates: Separating Programs from Design
	Reuven M. Lerner
	A Simple Solution
	Templates
	The Template Wrapper

	Letters to the Editor
	Various
	Using PPP
	Exit Xenix, Linux is here.
	PPP Control for Mortals
	Bristol Zoo Location
	Linux Appliance
	Bliss Misinformation
	Script Listings
	Linux in Schools
	Linux—Not for Newbees?
	Article Choices

	From the Editor
	Marjorie Richardson
	London Times
	New Printer
	Coming Up

	Linux Trademark Dispute
	Phil Hughes
	Where Are We Now?

	New Products
	LJ Staff
	Cyclades-Z Multiport Serial Cards
	LinkScan Version 2.1
	AllConnect
	3DGO
	XRT Products and Metro Link Motif
	MPAS

	SATAN: Analyzing Your Network
	Rob Havelt
	Requirements
	Building SATAN
	Stay Away from Precompiled Binaries
	After the Scan

	A Non-Technical Look inside the EXT2 File System
	Randy Appleton
	Disk Layout
	Partitions
	Groups
	Superblock
	Group Descriptors and Bitmaps
	Inodes and Such
	Directories
	The File System in Action
	Accessing a file
	Caching
	Conclusion

	Big Brother Network Monitoring System
	Paul M. Sittler
	Big Brother Installation
	Hacking Big Brother
	Future Enhancements of Big Brother
	Big Brother's Impact at Texas Agricultural
Extension Service

	Best of Technical Support
	Various
	Trouble With crontab
	Making Programs Executable
	/dev/fd0 Error Message
	Identifying Block Devices
	Mysterious Zombie Process
	Bug Fixes in netcfg
	Limiting Directory Size
	Install Quota Support
	init Run Levels
	Different Levels of Operation
	Making Sense of Core Dumps
	Using gcc and gdb
	Can't Receive Mail
	Adding Sendmail to Startup Scripts
	Mirroring Sites
	Perl Script Mirror

